The Influence of Ambulatory Aid on Lower-Extremity Muscle Activation During Gait

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Foot and ankle injuries are common and often require a nonweight-bearing period of immobilization for the involved leg. This nonweight-bearing period usually results in muscle atrophy for the involved leg. There is a dearth of objective data describing muscle activation for different ambulatory aids that are used during the aforementioned nonweight-bearing period. Objective: To compare activation amplitudes for 4 leg muscles during (1) able-bodied gait and (2) ambulation involving 3 different ambulatory aids that can be used during the acute phase of foot and ankle injury care. Design: Within-subject, repeated measures. Setting: University biomechanics laboratory. Participants: Sixteen able-bodied individuals (7 females and 9 males). Intervention: Each participant performed able-bodied gait and ambulation using 3 different ambulatory aids (traditional axillary crutches, knee scooter, and a novel lower-leg prosthesis). Main Outcome Measure: Muscle activation amplitude quantified via mean surface electromyography amplitude throughout the stance phase of ambulation. Results: Numerous statistical differences (P < .05) existed for muscle activation amplitude between the 4 observed muscles, 3 ambulatory aids, and able-bodied gait. For the involved leg, comparing the 3 ambulatory aids: (1) knee scooter ambulation resulted in the greatest vastus lateralis activation, (2) ambulation using the novel prosthesis and traditional crutches resulted in greater biceps femoris activation than knee scooter ambulation, and (3) ambulation using the novel prosthesis resulted in the greatest gastrocnemius activation (P < .05). Generally speaking, muscle activation amplitudes were most similar to able-bodied gait when subjects were ambulating using the knee scooter or novel prosthesis. Conclusions: Type of ambulatory aid influences muscle activation amplitude. Traditional axillary crutches appear to be less likely to mitigate muscle atrophy during the nonweighting, immobilization period that often follows foot or ankle injuries. Researchers and clinicians should consider these results when recommending ambulatory aids for foot or ankle injuries.

Sanders and Bowden are with the Department of Mechanical Engineering, Brigham Young University, Provo, UT. Baker is with the Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT. Jensen, Nichols, and Seeley are with the Department of Exercise Sciences, Brigham Young University, Provo, UT.

Seeley (matthewkseeley@gmail.com) is corresponding author.
  • 1.

    Hunt KJ, Hurwit D, Robell K, Gatewood C, Botser IB, Matheson G. Incidence and epidemiology of foot and ankle injuries in elite collegiate athletes. Am J Sports Med. 2017;45(2):426–433. PubMed doi:10.1177/0363546516666815

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Shawen SB, Dworak T, Anderson RB. Return to play following ankle sprain and lateral ligament reconstruction. Clin Sports Med. 2016;35(4):697–709. PubMed doi:10.1016/j.csm.2016.05.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Mohanty RK, Lenka P, Equebal A, Kumar R. Comparison of energy cost in transtibial amputees using “prosthesis” and “crutches without prosthesis” for walking activities. Ann Phys Rehabil Med. 2012;55(4):252–262. PubMed doi:10.1016/j.rehab.2012.02.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Moran J, Murphy A, Murphy D. The energy expenditure of non-weight bearing crutch walking on the level and ascending stairs. Gait Posture. 2015;42(1):23–26. PubMed doi:10.1016/j.gaitpost.2014.10.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bhambani Y, Clarkson H. Acute physiologic and perceptual responses during three modes of ambulation: walking, axillary crutch walking, and running. Arch Phys Med Rehabil. 1989;70(6):445–450. PubMed doi:10.1016/0003-9993(89)90004-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Nigg BM, Herzog W. Biomechanics of the Musculo-Skeletal System. 3rd ed. Hoboken, NJ: John Wiley & Sons; 2007:672.

  • 7.

    Miokovic T, Armbrecht G, Felsenberg D, Belavý DL. Heterogeneous atrophy occurs within individual lower limb muscles during 60 days of bed rest. J Appl Physiol. 2012;113(10):1545–1559. PubMed doi:10.1152/japplphysiol.00611.2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Wall BT, Dirks ML, Snijders T, Senden JM, Dolmans J, van Loon LJ. Substantial skeletal muscle loss occurs during only 5 days of disuse. Acta Physiol. 2014;210(3):600–611. PubMed doi:10.1111/apha.12190

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Phillips SM, Glover EI, Rennie MJ. Alterations of protein turnover underlying disuse atrophy in human skeletal muscle. J Appl Physiol. 2009;107(3):645–654. PubMed doi:10.1152/japplphysiol.00452.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Wall BT, Dirks ML, van Loon LJ. Skeletal muscle atrophy during short-term disuse: implications for age-related sarcopenia. Ageing Res Rev. 2013;12(4):898–906. PubMed doi:10.1016/j.arr.2013.07.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Campbell EL, Seynnes OR, Bottinelli R, et al. Skeletal muscle adaptations to physical inactivity and subsequent retraining in young men. Biogerontology. 2013;14(3):247–259. PubMed doi:10.1007/s10522-013-9427-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    de Boer MD, Seynnes OR, di Prampero PE, et al. Effect of 5 weeks horizontal bed rest on human muscle thickness and architecture of weight bearing and non-weight bearing muscles. Eur J Appl Physiol. 2008;104(2):401–407. PubMed doi:10.1007/s00421-008-0703-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    de Boer MD, Maganaris CN, Seynnes OR, Rennie MJ, Narici MV. Time course of muscular, neural and tendinous adaptations to 23 day unilateral lower-limb suspension in young men. J Physiol. 2007;583(pt 3):1079–1091. PubMed doi:10.1113/jphysiol.2007.135392

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Deschenes MR, Giles JA, McCoy RW, Volek JS, Gomez AL, Kraemer WJ. Neural factors account for strength decrements observed after short-term muscle unloading. Am J Physiol Regul Integr Comp Physiol. 2002;282(2):578–583. PubMed doi:10.1152/ajpregu.00386.2001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Seynnes OR, Maffiuletti NA, Maganaris CN. Soleus T reflex modulation in response to spinal and tendinous adaptations to unilateral lower limb suspension in humans. Acta Physiol. 2008;194(3):239–251. PubMed doi:10.1111/j.1748-1716.2008.01874.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Clark BC. In vivo alterations in skeletal muscle form and function after disuse atrophy. Med Sci Sports Exerc. 2009;41(10):1869–1875. PubMed doi:10.1249/MSS.0b013e3181a645a6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Urso ML. Regulation of muscle atrophy: wasting away from the outside in: an introduction. Med Sci Sports Exerc. 2009;41(10):1856–1859. PubMed doi:10.1249/MSS.0b013e3181a643b2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Wall BT, Morton JP, van Loon LJ. Strategies to maintain skeletal muscle mass in the injured athlete: nutritional considerations and exercise mimetics. Eur J Sport Sci. 2015;15(1):53–62. PubMed doi:10.1080/17461391.2014.936326

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Glasgow P, Phillips N, Bleakley C. Optimal loading: key variables and mechanisms. Br J Sports Med. 2015;49(5):278–279. PubMed doi:10.1136/bjsports-2014-094443

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361–374. PubMed doi:10.1016/S1050-6411(00)00027-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Hather BM, Adams GR, Tesch PA, Dudley GA. Skeletal muscle responses to lower limb suspension in humans. J Appl Physiol. 1992;72(4):1493–1498. PubMed

  • 22.

    Kang MH, Oh JS, Yang SH. Effects of spring-loaded crutches on gastrocnemius activity and upward displacement of the body during gait. J Phys Ther Sci. 2016;28(8):2347–2349. PubMed doi:10.1589/jpts.28.2347

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Clark BC, Manini TM, Ordway NR, Ploutz-Snyder LL. Leg muscle activity during walking with assistive devices at varying levels of weight bearing. Arch Phys Med Rehabil. 2004;85(9):1555–1560. PubMed doi:10.1016/j.apmr.2003.09.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Berg HE, Dudley GA, Häggmark T, Ohlsén H, Tesch PA. Effects of lower limb unloading on skeletal muscle mass and function in humans. J Appl Physiol. 1991;70(4):1882–1885. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Tesch PA, Trieschmann JT, Ekberg A. Hypertrophy of chronically unloaded muscle subjected to resistance exercise. J Appl Physiol. 2004;96(4):1451–1458. PubMed doi:10.1152/japplphysiol.01051.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Grosset JF, Onambele-Pearson G. Effect of foot and ankle immobilization on leg and thigh muscles’ volume and morphology: a case study using magnetic resonance imaging. Anat Rec. 2008;291(12):1673–1683. PubMed doi:10.1002/ar.20759

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Denning WM, Woodland S, Winward JG. The influence of experimental anterior knee pain during running on electromyography and articular cartilage metabolism. Osteoarthritis Cartilage. 2014;22(8):1111–1119. PubMed doi:10.1016/j.joca.2014.05.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 126 126 20
Full Text Views 11 11 2
PDF Downloads 6 6 1