Biomechanical Comparison of Countermovement Jumps Performed on Land and in Water: Age Effects

in Journal of Sport Rehabilitation
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: The aquatic environment provides a low-impact alternative to land-based exercise and rehabilitation in older adults. Objective: Evaluate the biomechanics of older adults and young adults performing jumping movements on land and in water. Design and Setting: Cross-sectional, mixed-factorial experiment; adjustable-depth pool at sports medicine research facility. Participants: Fifty-six young adults (age = 22.0 [3.9] y) and 12 healthy older adults (age = 57.3 [4.4] y). Interventions: Each participant performed 6 maximal effort countermovement jumps: 3 jumps were performed on land, and 3 other jumps were performed with participants immersed in chest-deep water. Main Outcome Measures: Using data from the amortization and propulsive phases of jumping, the authors computed the following kinetic and kinematic measures: peak and mean mechanical power, peak force, amortization time and rate, unweighting and propulsive times, and lower-extremity segment kinematics. Results: Mechanical power outputs were greater in younger adults (peak: 7322 [4035] W) versus older adults (peak: 5661.65 [2639.86] W) and for jumps performed in water (peak: 9387 [3981] W) versus on land (peak: 4545.84 [1356.53] W). Peak dorsiflexion velocities were greater for jumps performed in water (66 [34] deg/s) versus on land (4 [7] deg/s). The amortization rate was 26% greater in water versus on land. The amortization time was 20% longer in older adults versus young adults. Conclusions: Countermovement jumps performed in water are mechanically specific from those performed on land. Older adults jumped with longer unweighting times and increased mechanical power in water. These results suggest that aquatic-based exercise and rehabilitation programs that feature jumping movements may benefit older adults.

Louder is with the Division of Kinesiology and Sport Management, University of South Dakota, Vermillion, SD. Dolny and Bressel are with the Department of Kinesiology and Health Science, Utah State University, Logan, UT. Bressel is also with Sports Performance Research Institute, Auckland University of Technology, Auckland, New Zealand.

Louder (talinlouder@yahoo.com) is corresponding author.
  • 1.

    Burns ER, Stevens JA, Lee R. The direct costs of fatal and non-fatal falls among older adults—United States. J Safety Res. 2016;58:99103. PubMed ID: 27620939 doi:10.1016/j.jsr.2016.05.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Cesari M, Leeuwenburgh C, Lauretani F, et al. Frailty syndrome and skeletal muscle: results from the Invecchiare in Chianti study. Am J Clin Nutr. 2006;83:11421148. PubMed ID: 16685058

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Goodpaster BH, Carlson CL, Visser M, et al. Attenuation of skeletal muscle and strength in the elderly: the health ABC study. J Appl Physiol. 2001;90:21572165. PubMed ID: 11356778

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Legrand D, Vaes B, Matheï C, Adriaensen W, Van Pottelbergh G, Degryse JM. Muscle strength and physical performance as predictors of mortality, hospitalization, and disability in the oldest old. J Am Geriatr Soc. 2014;62:10301038. PubMed ID: 24802886 doi:10.1111/jgs.12840

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Manini TM, Clark BC. Dynapenia and aging: an update. J Gerontol A Biol Sci Med Sci. 2012;67:2840. PubMed ID: 21444359 doi:10.1093/gerona/glr010

  • 6.

    Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol. 2012;3:118. doi:10.3389/fphys.2012.00260

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Srikanthan P, Karlamangla AS. Muscle mass index as a predictor of longevity in older adults. Am J Med. 2014;127:547553. PubMed ID: 24561114 doi:10.1016/j.amjmed.2014.02.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Puthoff ML, Nielsen DH. Relationships among impairments in lower-extremity strength and power, functional limitations, and disability in older adults. Phys Ther. 2007;87:13341347. PubMed ID: 17684086 doi:10.2522/ptj.20060176

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Rantakokko M, Mänty M, Rantanen T. Mobility decline in old age. Exerc Sport Sci Rev. 2013;41:1925. PubMed ID: 23038241 doi:10.1097/JES.0b013e3182556f1e

  • 10.

    Reid KF, Fielding RA. Skeletal muscle power: a critical determinant of physical functioning in older adults. Exerc Sport Sci Rev. 2012;40:412. PubMed ID: 22016147 doi:10.1097/JES.0b013e31823b5f13

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Pereira MP, Gonçalves M. Muscular coactivation (CA) around the knee reduces power production in elderly women. Arch Gerontol Geriatr. 2011;52:317321. PubMed ID: 20546948 doi:10.1016/j.archger.2010.04.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Mantyh PW. The neurobiology of skeletal pain. Eur J Neurosci. 2014;39:508519. PubMed ID: 24494689 doi:10.1111/ejn.12462

  • 13.

    Beavers KM, Beavers DP, Houston DK, et al. Associations between body composition and gait-speed decline: results from the health, aging, and body composition study. Am J Clin Nutr. 2013;97:552560. PubMed ID: 23364001 doi:10.3945/ajcn.112.047860

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Arazi H, Coetzee B, Asadi A. Comparative effect of land and aquatic based plyometric training on the jumping ability and agility of young basketball players. South African J Res Sport Phys Educ Rec. 2012;34:114.

    • Search Google Scholar
    • Export Citation
  • 15.

    Atanasković A, Georgiev M, Mutavdzić V. The impact of plyometrics and aqua plyometrics on the lower extremities explosive strength in children aged 11–15. Res Kinesiol. 2015;43:111114.

    • Search Google Scholar
    • Export Citation
  • 16.

    Colado JC, Tella V, Triplett NT, González LM. Effects of a short-term aquatic resistance program on strength and body composition in fit young men. J Strength Cond Res. 2009;23:549559. PubMed ID: 19204568 doi:10.1519/JSC.0b013e31818eff5d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Kobak MS, Rebold MJ, DeSalvo R, Otterstetter R. A comparison of aquatic vs. land-based plyometrics on various performance variables. Int J Exerc Sci. 2015;8:134144.

    • Search Google Scholar
    • Export Citation
  • 18.

    Marsico MF, Malyszek KK, Bagley JR, Galpin AJ. A supplemental aquatic speed training program for NFL combine preparation. Strength Cond J. 2015;37:5864. doi:10.1519/SSC.0000000000000155

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Barker AL, Talevski J, Morello RT, Brand CA, Rahmann AE, Urquhart DM. Effectiveness of aquatic exercise for musculoskeletal conditions: a meta-analysis. Arch Phys Med Rehabil. 2014;95:17761786. PubMed ID: 24769068 doi:10.1016/j.apmr.2014.04.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Bento PCB, Pereira G, Ugrinowitsch C, Rodacki AL. The effects of a water-based exercise program on strength and functionality of older adults. J Aging Phys Act. 2012;20:469470. doi:10.1123/japa.20.4.469

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Bressel E, Louder TJ, Dolny DG. Age-related changes in postural sway are not consistent between land and aquatic environments. J Geriatr Phys Ther. 2017;40:113120. PubMed ID: 26881948 doi:10.1519/JPT.0000000000000081

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Bressel E, Wing J, Miller A, Dolny D. High-intensity interval training on an aquatic treadmill in adults with osteoarthritis: effect on pain, balance, function, and mobility. J Strength Cond Res. 2014;28:20882096. PubMed ID: 25057845 doi:10.1519/JSC.0000000000000258

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Douris P, Southard V, Varga C, Schauss W, Gennaro C, Reiss A. The effect of land and aquatic exercise on balance scores in older adults. J Geriatr Phys Ther. 2003;26:36. doi:10.1519/00139143-200304000-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Irandoust K, Taheri M. The effects of aquatic exercise on body composition and nonspecific low back pain in elderly males. J Phys Ther Sci. 2015;27:433435. PubMed ID: 25729184 doi:10.1589/jpts.27.433

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Kieffer HS, Lehman MA, Veacock D, Korkuch L. The effects of a short-term novel aquatic exercise program on functional strength and performance of older adults. Int J Exerc Sci. 2012;5:321333. PubMed ID: 27182389

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Park SE, Kim SH, Lee SB, et al. Comparison of underwater and overground treadmill walking to improve gait pattern and muscle strength after stroke. J Phys Ther Sci. 2012;24:10871090. doi:10.1589/jpts.24.1087

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Waller B, Ogonowska-Slodownik A, Vitor M, et al. Effect of therapeutic aquatic exercise on symptoms and function associated with lower limb osteoarthritis: systematic review with meta-analysis. Phys Ther. 2014;94:13831395. PubMed ID: 24903110 doi:10.2522/ptj.20130417

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Louder TJ, Searle CJ, Bressel E. Mechanical parameters and flight phase characteristics in aquatic plyometric jumping. Sports Biomech. 2016;15:342356. PubMed ID: 27125295 doi:10.1080/14763141.2016.1162840

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83:713721. PubMed ID: 12882612

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Chappell JD, Yu B, Kirkendall DT, Garrett WE. A comparison of knee kinetics between male and female recreational athletes in stop-jump tasks. Am J Sports Med. 2002;30(2):261267. PubMed ID: 11912098 doi:10.1177/03635465020300021901

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Stergiou N, Kent JA, McGrath D. Human movement variability and aging. Kinesiol Rev. 2016;5(1):1522. doi:10.1123/kr.2015-0048

  • 32.

    Lees A, Vanrenterghem J, De Clercq D. Understanding how an arm swing enhances performance in the vertical jump. J Biomech. 2004;37(12):19291940. PubMed ID: 15519601 doi:10.1016/j.jbiomech.2004.02.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Triplett NT, Colado JC, Benavent J, et al. Concentric and impact forces of single-leg jumps in an aquatic environment versus on land. Med Sci Sports Exerc. 2009;41:17901796. PubMed ID: 19657290 doi:10.1249/MSS.0b013e3181a252b7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Louder T, Bressel E, Nardoni C, Dolny D. Biomechanical comparison of loaded countermovement jumps performed on land and in water [published online ahead of print November 29, 2017]. J Strength Cond Res. PubMed ID: 29194184 doi: .

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Hamill J, Knutzen KM. Biomechanical Basis of Human Movement. Philadelphia, PA: Lippincott Williams & Wilkins; 2006.

  • 36.

    Clark MA, Lucett S, Corn RJ. NASM Essentials of Personal Fitness Training. Philadelphia, PA: Lippincott Williams & Wilkins; 2008.

  • 37.

    Takacs J, Carpenter MG, Garland SJ, Hunt MA. The role of neuromuscular changes in aging and knee osteoarthritis on dynamic postural control. Aging Dis. 2013;4:8499. PubMed ID: 23696951

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Louder T, Bressel E, Baldwin M, Dolny DG, Gordin R, Miller A. Effect of aquatic immersion on static balance. Int J Aquat Res Educ. 2014;8:5365. doi:10.1123/ijare.2013-0014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Lee LL, Arthur A, Avis M. Using self-efficacy theory to develop interventions that help older people overcome psychological barriers to physical activity: a discussion paper. Int J Nurs Stud. 2008;45:16901699. PubMed ID: 18501359 doi:10.1016/j.ijnurstu.2008.02.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 299 220 19
Full Text Views 10 5 1
PDF Downloads 6 5 0