The Effects of Blood Flow Restricted Electrostimulation on Strength and Hypertrophy

in Journal of Sport Rehabilitation
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: The combined effect of neuromuscular electrical stimulation (NMES) and blood flow restriction (BFR) on muscle mass and strength has not been thoroughly investigated. Objective: To examine the effects of combined and independent BFR and a low-intensity NMES on skeletal muscle adaptation. Design: Exploratory study. Setting: Laboratory. Participants: Twenty recreationally active subjects. Main Outcome Measures: Subjects had each leg randomly allocated to 1 of 4 possible intervention groups: (1) cyclic BFR alone, (2) NMES alone, (3) BFR + NMES, or (4) control. Each leg was stimulated in its respective intervention group for 32 minutes, 4 days per week for 6 weeks. Mean differences in size (in grams) and isometric strength (in kilograms), between week 0 and week 6, were calculated for each group. Results: Leg strength increased 32 (19) kg in the BFR + NMES group, which differed from the 3 (11) kg change in the control group (P = .03). The isolated NMES and BFR groups revealed increases of 16 (28) kg and 18 (17) kg, respectively, but these did not statistically differ from the control, or one another. No alterations were statistically significant for leg size. Conclusion: Compared with a control that received no treatment, the novel combination of BFR and NMES led to increasing muscular strength of the knee extensors, but not muscle mass which had a large interindividual variability in response.

The authors are with Human Performance & Health Research Laboratory, University of Guelph, Guelph, Ontario, Canada.

Burr (burrj@uoguelph.ca) is corresponding author.
  • 1.

    Sinacore DR, Gulve EA. The role of skeletal muscle in glucose transport, glucose homeostasis, and insulin resistance: implications for physical therapy. Phys Ther. 1993;73(12):878891. PubMed doi:10.1093/ptj/73.12.878

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Helge JW, Biba TO, Galbo H, Gaster M, Donsmark M. Muscle triacylglycerol and hormone-sensitive lipase activity in untrained and trained human muscles. Eur J Appl Physiol. 2006;97(5):566572. PubMed doi:10.1007/s00421-006-0220-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bosy-Westphal A, Reinecke U, Schlörke T, et al. Effect of organ and tissue masses on resting energy expenditure in underweight, normal weight and obese adults. Int J Obes Relat Metab Disord. 2004;28(1):7279. doi:10.1038/sj.ijo.0802526

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50(5):889896. PubMed doi:10.1046/j.1532-5415.2002.50216.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Garber CE, Blissmer B, Deschenes MR, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):13341359. PubMed doi:10.1249/MSS.0b013e318213fefb

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Slysz J, Stultz J, Burr JF. The efficacy of blood flow restricted exercise: a systematic review & meta-analysis. J Sci Med Sport. 2016;19:669675. doi:10.1016/j.jsams.2015.09.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Gibson J, Smith K, Rennie M. Prevention of disuse muscle atrophy by means of electrical stimulation: maintenance of protein synthesis. Lancet. 1988;332(8614):767770. doi:10.1016/S0140-6736(88)92417-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Maffiuletti NA, Roig M, Karatzanos E, Nanas S. Neuromuscular electrical stimulation for preventing skeletal-muscle weakness and wasting in critically ill patients: a systematic review. BMC Med. 2013;11(1):110. doi:10.1186/1741-7015-11-137

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Vivodtzev I, Debigare R, Gagnon P, et al. Functional and muscular effects of neuromuscular electrical stimulation in patients with severe COPD: a randomized clinical trial. Chest. 2012;141(3):716725. PubMed doi:10.1378/chest.11-0839

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Natsume T, Ozaki H, Saito AI, Abe T, Naito H. Effects of electrostimulation with blood flow restriction on muscle size and strength. Med Sci Sports Exerc. 2015;47:26212627. PubMed doi:10.1249/MSS.0000000000000722

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Lieber RL, Kelly MJ. Factors influencing quadriceps femoris muscle torque using transcutaneous neuromuscular electrical stimulation. Phys Ther. 1991;71(10):715721. PubMed doi:10.1093/ptj/71.10.715

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gorgey AS, Timmons MK, Dolbow DR, et al. Electrical stimulation and blood flow restriction increase wrist extensor cross-sectional area and flow meditated dilatation following spinal cord injury. Eur J Appl Physiol. 2016;116(6):12311244. PubMed doi:10.1007/s00421-016-3385-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Menon MK, Houchen L, Harrison S, Singh SJ, Morgan MD, Steiner MC. Ultrasound assessment of lower limb muscle mass in response to resistance training in COPD. Respir Res. 2012;13:119. PubMed doi:10.1186/1465-9921-13-119

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Dal Corso S, Nápolis L, Malaguti C, et al. Skeletal muscle structure and function in response to electrical stimulation in moderately impaired COPD patients. Respir Med. 2007;101(6):12361243. PubMed doi:10.1016/j.rmed.2006.10.023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Abdellaoui A, Prefaut C, Gouzi F, et al. Skeletal muscle effects of electrostimulation after COPD exacerbation: a pilot study. Eur Respir J. 2011;38:781788. PubMed doi:10.1183/09031936.00167110

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Loenneke J, Wilson J, Marín P, Zourdos M, Bemben M. Low intensity blood flow restriction training: a meta-analysis. Eur J Appl Physiol. 2012;112(5):18491859. PubMed doi:10.1007/s00421-011-2167-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Ross R, De Lannoy L, Stotz J. Separate effects of intensity and amount of exercise on interindividual cardiorespiratory fitness response. Mayo Clin Proc. 2015;90(11):15061514. PubMed doi:10.1016/j.mayocp.2015.07.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 978 746 64
Full Text Views 51 24 1
PDF Downloads 28 18 1