Effect of Gastrocnemius Kinesio Taping on Countermovement Jump Performance and Vertical Stiffness Following Muscle Fatigue

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Kinesio tape (KT) is a widely used intervention in the fields of sports and rehabilitation. However, its effects on lower-extremity behavior during functional activities are not entirely known. Objective: To test the hypothesis that application of KT can change performance and vertical stiffness (VS) during the countermovement jump (CMJ) before and after a fatigue protocol. Design: A predesign and postdesign to study the effect of KT in 2 situations, prefatigue and postfatigue. In each fatiguing condition, there were 2 conditions with and without KT application on the gastrocnemius muscle. Setting: Biomechanics laboratory. Participants: Fifty healthy, nonathlete participants (26 females and 24 males). Interventions: KT application on the gastrocnemius muscle and a fatigue protocol to induce fatigue in plantar flexor muscles. Main Outcome Measures: Various jumping parameters, including jump height, maximum force, maximum power, rate of force development, eccentric lower-limb stiffness, and VS, were calculated using the vertical ground reaction force data. Eccentric lower-limb stiffness and VS were calculated using a mass-spring model. The studied variables can present lower-extremity elastic behavior and performance during CMJ. Results: The results of a 2-way repeated-measures analysis of variance showed no significant effect for KT application. Fatigue resulted in lower values of jump height, maximum power, and VS. Moreover, male subjects showed greater values of jump height, maximum force, and maximum power than did females. Conclusions: The main finding of this study was that gastrocnemius KT has no effect on performance or elastic behavior of the lower-extremity during CMJ. Moreover, KT cannot reduce the adverse effect of fatigue in a functional activity such as CMJ. It seems that gastrocnemius KT is not effective for demanding activities.

Boozari is with the Department of Physiotherapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran. Sanjari is with Biomechanics Laboratory, Department of Basic Rehabilitation Sciences, Rehabilitation Research Center, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran. Amiri and Takamjani are with the Department of Physiotherapy and Iranian Center of Excellence in Physiotherapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran.

Sanjari (sanjarima@alum.sharif.edu) is corresponding author.
  • 1.

    KaseK, WallisJ, KaseT. Clinical Therapeutic Applications of the Kinesio Taping Methods. 3rd ed. Albuquerque, NM: Kinesio IP LLC; 2013.

  • 2.

    KossJ, MunzJ. What is the current level of evidence and the efficacy of medical taping on circulation, muscle function, correction, pain and proprioception?Man Ther. 2012;16(3):138–149. doi:10.1055/s-0032-1322427

    • Search Google Scholar
    • Export Citation
  • 3.

    Zajt-KwiatkowskaJ, Rajkowska-LabonE, SkrobotW, BakulaS, SzamotulskaJ. Application of Kinesio Taping® for treatment of sports injuries. Res Yearbook. 2007;13(1):130–134.

    • Search Google Scholar
    • Export Citation
  • 4.

    KalronA, Bar-SelaS. A systematic review of the effectiveness of Kinesio Taping®—fact or fashion?Eur J Phys Rehabil Med. 2013;49(5):699–709. PubMed

    • Search Google Scholar
    • Export Citation
  • 5.

    HuangCY, HsiehTH, LuSC, SuFC. Effect of the Kinesio tape to muscle activity and vertical jump performance in healthy inactive people. Biomed Eng Online. 2011;10(1):70. doi:10.1186/1475-925X-10-70

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Mostert-WentzelK. Effect of kinesio taping on explosive muscle power of gluteus maximus of male athletes. S Afr J Sports Med. 2012;24(3):75–80. doi:10.17159/2078-516X/2012/v24i3a764

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    StrutzenbergerG, MooreJ, GriffithsH, SchwamederH, IrwinG. Effects of gluteal kinesio-taping on performance with respect to fatigue in rugby players. Eur J Sport Sci. 2015;16(2):165–171. PubMed doi:10.1080/17461391.2015.1004372

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    ChaneyC, HirayamaGM, MendozaTE, SchmittDM, JaniniS. The effects of Kinesio™ tape on vertical jump, 20-m sprint, and self-perception of performance in high school basketball players. Curr Orthop Pract. 2015;26(4):420–424. doi:10.1097/BCO.0000000000000253

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    De HoyoM, Álvarez-MesaA, SañudoB, CarrascoL, DomínguezS. Immediate effect of kinesio taping on muscle response in young elite soccer players. J Sport Rehabil. 2013;22(1):53–58. PubMed doi:10.1123/jsr.22.1.53

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    NakajimaMA, BaldridgeC. The effect of kinesio® tape on vertical jump and dynamic postural control. Int J Sports Phys Ther. 2013;8(4):393–406. PubMed

  • 11.

    NunesGS, De NoronhaM, CunhaHS, RuschelC, BorgesNGJr. Effect of kinesio taping on jumping and balance in athletes: a crossover randomized controlled trial. J Strength Cond Res. 2013;27(11):3183–3189. PubMed doi:10.1519/JSC.0b013e31828a2c17

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    PupoJD, DetanicoD, dos SantosSG. Kinetic parameters as determinants of vertical jump performance. Rev Bras Cineantropom Desempenho Hum. 2012;14(1):41–51.

    • Search Google Scholar
    • Export Citation
  • 13.

    BabicJ, LenarcicJ. Vertical jump: biomechanical analysis and simulation study. In: de Pina FilhoAC, ed. Humanoid Robots, New Developments. Vienna Austria: Advanced Robotic Systems International; 2007:551–566.

    • Search Google Scholar
    • Export Citation
  • 14.

    EarpJE, KraemerWJ, NewtonRU, et al. Lower-body muscle structure and its role in jump performance during squat, countermovement, and depth drop jumps. J Strength Cond Res. 2010;24(3):722–729. PubMed doi:10.1519/JSC.0b013e3181d32c04

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    SemenickDM, AdamsKO. Sports performance series: the vertical jump: a kinesiological analysis with recommendations for strength and conditioning programming. Strength Cond J. 1987;9(3):5–11. doi:10.1519/0744-0049(1987)009<0005:TVJAKA>2.3.CO;2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Álvarez-ÁlvarezS, JoséF, Rodríguez-FernándezA, Güeita-RodríguezJ, WallerB. Effects of Kinesio® Tape in low back muscle fatigue: randomized, controlled, doubled-blinded clinical trial on healthy subjects. J Back Musculoskelet Rehabil. 2014;27(2):203–212. doi:10.3233/BMR-130437

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    HanJT, LeeJH. Effects of kinesiology taping on repositioning error of the knee joint after quadriceps muscle fatigue. J Phys Ther Sci. 2014;26(6):921–923. PubMed doi:10.1589/jpts.26.921

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    ZhangS, FuW, PanJ, WangL, XiaR, LiuY. Acute effects of Kinesio taping on muscle strength and fatigue in the forearm of tennis players. J Sci Med Sport. 2016;19(6):459–464. PubMed doi:10.1016/j.jsams.2015.07.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    KataokaY, IchimaruA. Effect of kinesio taping and low-strength exercises on blood pressure and peripheral circulation. 2005. http://www.kinesiotaping.com/images/kinesio-association/pdf/research/2005-10.pdf

    • Export Citation
  • 20.

    PaillardT. Effects of general and local fatigue on postural control: a review. Neurosci Biobehav Rev. 2012;36(1):162–176. PubMed doi:10.1016/j.neubiorev.2011.05.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    ZancaGG, GrüningerB, MattielloSM. Effects of kinesio taping on scapular kinematics of overhead athletes following muscle fatigue. J Electromyogr Kinesiol. 2015;29:113–120. doi:10.1016/j.jelekin.2015.06.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    FaulF, ErdfelderE, LangAG, BuchnerA. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–191. PubMed doi:10.3758/BF03193146

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    HoffmanM, SchraderJ, ApplegateT, KocejaD. Unilateral postural control of the functionally dominant and nondominant extremities of healthy subjects. J Athl Train. 1998;33(4):319–322.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    HoltBW, LambourneK. The impact of different warm-up protocols on vertical jump performance in male collegiate athletes. J Strength Cond Res. 2008;22(1):226–229. PubMed doi:10.1519/JSC.0b013e31815f9d6a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    ÖsterbergU, SvantessonU, TakahashiH, GrimbyG. Torque, work and EMG development in a heel-rise test. Clin Biomech. 1998;13(4):344–350. doi:10.1016/S0268-0033(98)00100-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    PinsaultN, VuillermeN. Differential postural effects of plantar–flexor muscle fatigue under normal, altered and improved vestibular and neck somatosensory conditions. Exp Brain Res. 2008;191(1):99–107. PubMed doi:10.1007/s00221-008-1500-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    BorgG. Psychophysical scaling with applications in physical work and the perception of exertion. Scand J Work Environ Health. 1990;16(1):55–58. doi:10.5271/sjweh.1815

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    MoirG, ShastriP, ConnaboyC. Intersession reliability of vertical jump height in women and men. J Strength Cond Res. 2008;22(6):1779–1784. PubMed doi:10.1519/JSC.0b013e318185f0df

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    DowlingJJ, VamosL. Identification of kinetic and temporal factors related to vertical jump performance. J Appl Biomech. 1993;9:95–110. doi:10.1123/jab.9.2.95

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    HunterJP, MarshallRN. Effects of power and flexibility training on vertical jump technique. Med Sci Sports Exerc. 2002;34(3):478–486. doi:10.1097/00005768-200203000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    ButlerRJ, CrowellHP, DavisIM. Lower extremity stiffness: implications for performance and injury. Clin Biomech. 2003;18(6):511–517. doi:10.1016/S0268-0033(03)00071-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    PaduaDA, CarciaCR, ArnoldBL, GranataKP. Gender differences in leg stiffness and stiffness recruitment strategy during two-legged hopping. J Mot Behav. 2005;37(2):111–126. doi:10.3200/JMBR.37.2.111-126

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    McLachlanKA, MurphyAJ, WatsfordML, ReesS. The interday reliability of leg and ankle musculotendinous stiffness measures. J Appl Biomech. 2006;22(4):296–304. PubMed doi:10.1123/jab.22.4.296

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    McLellanCP, LovellDI, GassGC. The role of rate of force development on vertical jump performance. J Strength Cond Res. 2011;25(2):379–385. PubMed doi:10.1519/JSC.0b013e3181be305c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    McMahonJJ, RejSJ, ComfortP. Sex differences in countermovement jump phase characteristics. Sports. 2017;5(1):8–11. doi:10.3390/sports5010008

  • 36.

    MeylanC, McMasterT, CroninJ, MohammadNI, RogersC. Single-leg lateral, horizontal, and vertical jump assessment: reliability, interrelationships, and ability to predict sprint and change-of-direction performance. J Strength Cond Res. 2009;23(4):1140–1147. PubMed doi:10.1519/JSC.0b013e318190f9c2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    CohenJ. The Analysis of Variance and Covariance. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.

  • 38.

    FarleyCT, MorgenrothDC. Leg stiffness primarily depends on ankle stiffness during human hopping. J Biomech. 1999;32(3):267–273. PubMed doi:10.1016/S0021-9290(98)00170-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    NuzzoJL, McBrideJM, CormieP, McCaulleyGO. Relationship between countermovement jump performance and multijoint isometric and dynamic tests of strength. J Strength Cond Res. 2008;22(3):699–707. PubMed doi:10.1519/JSC.0b013e31816d5eda

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    RiggsMP, SheppardJM. The relative importance of strength and power qualities to vertical jump height of elite beach volleyball players during the counter-movement and squat jump. J Hum Sport Exerc. 2009;4(3):221–236. doi:10.4100/jhse.2009.43.04

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 129 129 21
Full Text Views 8 8 1
PDF Downloads 1 1 0