A Comparison of Both Motorized and Nonmotorized Treadmill Gait Kinematics to Overground Locomotion

in Journal of Sport Rehabilitation

Click name to view affiliation

Adam M. Fullenkamp
Search for other papers by Adam M. Fullenkamp in
Current site
Google Scholar
PubMed
Close
,
Danilo V. Tolusso
Search for other papers by Danilo V. Tolusso in
Current site
Google Scholar
PubMed
Close
,
C. Matthew Laurent
Search for other papers by C. Matthew Laurent in
Current site
Google Scholar
PubMed
Close
,
Brian M. Campbell
Search for other papers by Brian M. Campbell in
Current site
Google Scholar
PubMed
Close
, and
Andrea E. Cripps
Search for other papers by Andrea E. Cripps in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: Motorized treadmills (MTs) present an altered motor task compared to overground (OG) locomotion in that MT belt surfaces are motor-driven, whereas individuals walking/running OG must propel themselves. A possible solution may lie with novel nonmotorized treadmill (NMT) devices as the belt surface is propelled by the user. Objective: The purpose of this study was to compare gait performance during both MT and NMT locomotion to OG. Design: Crossover study. Setting: A university research laboratory. Patients: A total of 20 healthy adults (10 women) participated in the study. Intervention: Each participant performed self-selected walking and running OG, and on both an MT and NMT. Main Outcome Measure: Shoulder, trunk, and lower-extremity kinematics were analyzed for each treadmill condition and compared to OG. Results: The analyses demonstrated that there were no differences between MT and OG gait kinematics during either walking or running. However, NMT gait showed increased hip, knee, and ankle flexions in late swing and early stance compared to OG during both walking and running. For example, during walking, the NMT elicited hip-, knee-, and ankle-flexion/extension angles of 34.7°, 8.0°, and 3.6° at foot strike compared to 24.8°, −3.1°, and −5.8° in the OG condition (P < .05). There was also a significant reduction in trunk-flexion/extension range of motion during running compared to OG (7.7° in NMT vs 9.8° in OG). Conclusions: These differences may have implications for both training and rehabilitation on an NMT. Future studies should consider the influence of NMT familiarization on gait performance and should emphasize the assessment of neuromuscular performance.

Fullenkamp, Laurent, Campbell, and Cripps are with Exercise Science Program, School of Human Movement, Sport, & Leisure Studies, Bowling Green State University, Bowling Green, OH. Tolusso is with the Department of Kinesiology, University of Alabama, Tuscaloosa, AL.

Fullenkamp (fullena@bgsu.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Baur H, Hirschmüller A, Müller S, Gollhofer A, Mayer F. Muscular activity in treadmill and overground running. Isokinetics Exerc Sci. 2007;15(3):165171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Wang L, Hong Y, Li JX. Muscular activity of lower extremity muscles running on treadmill compared with different overground surfaces. Am J Sports Sci Med. 2014;2(4):161165. doi:10.12691/ajssm-2-4-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Wank V, Frick U, Schmidtbleicher D. Kinematics and electromyography of lower limb muscles in overground and treadmill running. Int J Sports Med. 1998;19(7):455461. PubMed ID: 9839841 doi:10.1055/s-2007-971944

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Franks KA, Brown LE, Coburn JW, Kersey RD, Bottaro M. Effects of motorized vs non-motorized treadmill training on hamstring/quadriceps strength ratios. J Sports Sci Med. 2012;11(1):7176. PubMed ID: 24137064

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Fullenkamp AM, Laurent CM, Campbell BM. Automated gait temporal-spatial assessment from non-motorized treadmill belt speed data. Gait Posture. 2015;41(1):141145. PubMed ID: 25311386 doi:10.1016/j.gaitpost.2014.09.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Lee SJ, Hidler J. Biomechanics of overground vs. treadmill walking in healthy individuals. J Appl Physiol. 2008;104(3):747755. PubMed ID: 18048582 doi:10.1152/japplphysiol.01380.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Nymark JR, Balmer SJ, Melis EH, Lemaire ED, Millar S. Electromyographic and kinematic nondisabled gait differences at extremely slow overground and treadmill walking speeds. J Rehabil Res Dev. 2005;42(4):523534. PubMed ID: 16320147 doi:10.1682/JRRD.2004.05.0059

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Damiano DL, Norman T, Stanley CJ, Park HS. Comparison of elliptical training, stationary cycling, treadmill walking and overground walking. Gait Posture. 2011;34(2):260264. PubMed ID: 21683599 doi:10.1016/j.gaitpost.2011.05.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Schwartz MH, Rozumalski A. The gait deviation index: a new comprehensive index of gait pathology. Gait Posture. 2008;28(3):351357. PubMed ID: 18565753 doi:10.1016/j.gaitpost.2008.05.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Stolze H, Kuhtz-Buschbeck JP, Mondwurf C, et al. Gait analysis during treadmill and overground locomotion in children and adults. Electroencephalogr Clin Neurophysiol. 1997;105(6):490497. PubMed ID: 9448652 doi:10.1016/S0924-980X(97)00055-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Carpinella I, Crenna P, Rabuffetti M, Ferrarin M. Coordination between upper- and lower-limb movements is different during overground and treadmill walking. Eur J Appl Physiol. 2010;108(1):7182. PubMed ID: 19756711 doi:10.1007/s00421-009-1168-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Alton F, Baldey L, Caplan S, Morrissey MC. A kinematic comparison of overground and treadmill walking. Clin Biomech. 1998;13(6):434440. doi:10.1016/S0268-0033(98)00012-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Van Caekenberghe I, De Smet K, Segers V, De Clercq D. Overground vs. treadmill walk-to-run transition. Gait Posture. 2010;31(4):420428. PubMed ID: 20219374 doi:10.1016/j.gaitpost.2010.01.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Nigg BM, De Boer RW, Fisher V. A kinematic comparison of overground and treadmill running. Med Sci Sports Exerc. 1995;27(1):98105. PubMed ID: 7898346 doi:10.1249/00005768-199501000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Schache AG, Blanch PD, Rath DA, Wrigley TV, Starr R, Bennell KL. A comparison of overground and treadmill running for measuring the three-dimensional kinematics of the lumbo-pelvic–hip complex. Clin Biomech. 2001;16(8):667680. PubMed ID: 11535348 doi:10.1016/S0268-0033(01)00061-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Riley PO, Dicharry J, Franz J, Della Croce U, Wilder RP, Kerrigan DC. A kinematics and kinetic comparison of overground and treadmill running. Med Sci Sports Exerc. 2008;40(6):10931100. PubMed ID: 18460996 doi:10.1249/MSS.0b013e3181677530

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Thompson, WR, Gordon, NF, Pescatello, LS and American College of Sports Medicine, et al. ACSM’s Guidelines for Exercise Testing and Prescription. 8th ed. New York, NY: Lippincott Williams & Wilkins; 2010.

    • Search Google Scholar
    • Export Citation
  • 18.

    Davis RB III, Õunpuu S, Tyburski D, Gage JR. A gait analysis data collection and reduction technique. Hum Mov Sci. 1991;10(5):575587. doi:10.1016/0167-9457(91)90046-Z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Zeni JA Jr, Richards JG, Higginson JS. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture. 2008;27(4):710714. PubMed ID: 17723303 doi:10.1016/j.gaitpost.2007.07.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983;105(2):136144. PubMed ID: 6865355 doi:10.1115/1.3138397

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Wu G, Cavanagh PR. ISB recommendations for standardization in the reporting of kinematic data. J Biomech. 1995;28(10):12571261. PubMed ID: 8550644 doi:10.1016/0021-9290(95)00017-C

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Wu G, Siegler S, Allard P, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. International Society of Biomechanics. J Biomech. 2002;35(4):543548. PubMed ID: 11934426 doi:10.1016/S0021-9290(01)00222-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Dingwell JB, Cusumano JP, Cavanagh PR, Sternad D. Local dynamic stability versus kinematic variability of continuous overground and treadmill walking. J Biomech Eng. 2001;123:2732. PubMed ID: 11277298 doi:10.1115/1.1336798

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2742 982 32
Full Text Views 56 28 0
PDF Downloads 63 28 0