Influence of Body Composition on Functional Movement Screen™ Scores in College Football Players

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: The functional movement screen (FMS™) is used to identify movement asymmetries and deficiencies. While obesity has been reported to impede movement, the correlation between body mass index (BMI), body fat percentage (BF%), and FMS™ in athletes is unknown. Objective: To determine if there is a relationship between BMI, BF%, and FMS™ scores in a sample of National Collegiate Athletic Association Division I football athletes. Design: Cross-sectional study. Setting: Biodynamics laboratory. Participants: A total of 38 male freshman football players (18.0 [0.7] y, 185.3 [5.5] cm, and 103.9 [20.3] kg). Interventions: Height, weight, and BF% were collected, and subjects underwent the FMS™ conducted by a certified athletic trainer. Main Outcome Measures: The dependent variables were BMI, BF%, composite FMS™ score, and 7 individual FMS™ test scores. Subjects were grouped as normal BMI (BMI < 30 kg/m2) or obese (BMI ≥ 30 kg/m2). A composite FMS™ score of ≤14 and an individual FMS™ score of ≤1 were classified as cutoffs for poor movement performance. Results: A negative correlation between composite FMS™ score and BMI approached significance (P = .07, ρ = .296). A negative correlation between composite FMS™ score and BF% was significant (P = .01, ρ = −.449). There was a significant difference in the number of obese subjects scoring below the composite FMS™ cutoff (χ2 = 5.179, P = .02) and the individual FMS™ cutoff on the deep squat (χ2 = 6.341, P = .01), hurdle step (χ2 = 9.870, P = .002), and in-line lunge (χ2 = 5.584, P = .02) when compared with normal BMI subjects. Conclusions: Increased BF% and BMI relate to lower composite FMS™ and individual FMS™ test scores, indicating potentially poor movement patterns in larger National Collegiate Athletic Association football athletes. Future research should focus on examining lower extremity–specific FMS™ tasks individually from composite FMS™ scores.

The authors are with the Sports Health & Performance Institute, The Ohio State University, Columbus, OH. Nicolozakes and Hewett are also with the Dept of Biomedical Engineering, The Ohio State University, Columbus, OH. Borchers and Hewett are also with the Dept of Family Medicine, The Ohio State University, Columbus, OH. Hewett is also with Orthopaedics, Mayo Clinic, Rochester, MN.

Nicolozakes (constantine.nicolozakes@northwestern.edu) is corresponding author.
  • 1.

    Dick R, Ferrara MS, Agel J, et al. Descriptive epidemiology of collegiate men’s football injuries: National Collegiate Athletic Association Injury Surveillance System, 1988–1989 through 2003–2004. J Athl Train. 2007;42(2):221–233. PubMed ID: 17710170

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Hootman JM, Dick R, Agel J. Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. J Athl Train. 2007;42(2):311–319. PubMed ID: 17710181

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Powell JW, Dompier TP. Analysis of injury rates and treatment patterns for time-loss and non-time-loss injuries among collegiate student-athletes. J Athl Train. 2004;39(1):56–70. PubMed ID: 15085213

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Podlog L, Dimmock J, Miller J. A review of return to sport concerns following injury rehabilitation: practitioner strategies for enhancing recovery outcomes. Phys Ther Sport. 2011;12(1):36–42. PubMed ID: 21256448 doi:10.1016/j.ptsp.2010.07.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Maffulli N, Longo UG, Gougoulias N, Caine D, Denaro V. Sport injuries: a review of outcomes. Br Med Bull. 2011;97:47–80. PubMed ID: 20710023 doi:10.1093/bmb/ldq026

  • 6.

    Cook G, Burton L, Hoogenboom B. Pre-participation screening: the use of fundamental movements as an assessment of function—part 1. N Am J Sports Phys Ther. 2006;1(2):62–72. PubMed ID: 21522216

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Cook G, Burton L, Hoogenboom B. Pre-participation screening: the use of fundamental movements as an assessment of function—part 2. N Am J Sports Phys Ther. 2006;1(3):132–139. PubMed ID: 21522225

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Kiesel K, Plisky PJ, Voight ML. Can serious injury in professional football be predicted by a preseason functional movement screen? N Am J Sports Phys Ther. 2007;2(3):147–158. PubMed ID: 21522210

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Kiesel KB, Butler RJ, Plisky PJ. Prediction of injury by limited and asymmetrical fundamental movement patterns in American football players. J Sport Rehabil. 2014;23(2):88–94. PubMed ID: 24225032 doi:10.1123/JSR.2012-0130

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    O’Connor FG, Deuster PA, Davis J, Pappas CG, Knapik JJ. Functional movement screening: predicting injuries in officer candidates. Med Sci Sports Exerc. 2011;43(12):2224–2230. PubMed ID: 21606876 doi:10.1249/MSS.0b013e318223522d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bushman TT, Grier TL, Canham-Chervak MC, Anderson MK, North WJ, Jones BH. Pain on functional movement screen tests and injury risk. J Strength Cond Res. 2015;29(suppl 11):65–70. PubMed ID: 26506201 doi:10.1519/JSC.0000000000001040

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Bushman TT, Grier TL, Canham-Chervak M, Anderson MK, North WJ, Jones BH. The functional movement screen and injury risk: association and predictive value in active men. Am J Sports Med. 2016;44(2):297–304. PubMed ID: 26657573 doi:10.1177/0363546515614815

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Park W, Ramachandran J, Weisman P, Jung ES. Obesity effect on male active joint range of motion. Ergonomics. 2010;53(1):102–108. PubMed ID: 20069486 doi:10.1080/00140130903311617

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Duncan MJ, Stanley M. Functional movement is negatively associated with weight status and positively associated with physical activity in British primary school children. J Obes. 2012;2012:697563. PubMed ID: 22545208 doi:10.1155/2012/697563

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Duncan MJ, Stanley M, Leddington Wright S. The association between functional movement and overweight and obesity in British primary school children. BMC Sports Sci Med Rehabil. 2013;5:11. PubMed ID: 23675746 doi:10.1186/2052-1847-5-11

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Perry FT, Koehle MS. Normative data for the functional movement screen in middle-aged adults. J Strength Cond Res. 2013;27(2):458–462. PubMed ID: 22561971 doi:10.1519/JSC.0b013e3182576fa6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: executive summary. Expert panel on the identification, evaluation, and treatment of overweight in adults. Am J Clin Nutr. 1998;68(4):899–917. PubMed ID: 9771869 doi:10.1093/ajcn/68.4.899

    • Search Google Scholar
    • Export Citation
  • 18.

    Ode JJ, Pivarnik JM, Reeves MJ, Knous JL. Body mass index as a predictor of percent fat in college athletes and nonathletes. Med Sci Sports Exerc. 2007;39(3):403–409. PubMed ID: 17473765 doi:10.1249/01.mss.0000247008.19127.3e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Wellens RI, Roche AF, Khamis HJ, Jackson AS, Pollock ML, Siervogel RM. Relationships between the Body Mass Index and body composition. Obes Res. 1996;4(1):35–44. PubMed ID: 8787936 doi:10.1002/j.1550-8528.1996.tb00510.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Bosch TA, Burruss TP, Weir NL, et al. Abdominal body composition differences in NFL football players. J Strength Cond Res. 2014;28(12):3313–3319. PubMed ID: 25187247 doi:10.1519/JSC.0000000000000650

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Raty HP, Battie MC, Videman T, Sarna S. Lumbar mobility in former elite male weight-lifters, soccer players, long-distance runners and shooters. Clin Biomech. 1997;12(5):325–330. PubMed ID: 11415741 doi:10.1016/S0268-0033(97)00011-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Oliver JM, Lambert BS, Martin SE, Green JS, Crouse SF. Predicting football players’ dual-energy x-ray absorptiometry body composition using standard anthropometric measures. J Athl Train. 2012;47(3):257–263. PubMed ID: 22892406 doi:10.4085/1062-6050-47.3.12

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Kraemer WJ, Torine JC, Silvestre R, et al. Body size and composition of National Football League players. J Strength Cond Res. 2005;19(3):485–489. PubMed ID: 16095394 doi:10.1519/18175.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Baron SL, Hein MJ, Lehman E, Gersic CM. Body mass index, playing position, race, and the cardiovascular mortality of retired professional football players. Am J Cardiol. 2012;109(6):889–896. PubMed ID: 22284915 doi:10.1016/j.amjcard.2011.10.050

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Turbeville SD, Cowan LD, Owen WL, Asal NR, Anderson MA. Risk factors for injury in high school football players. Am J Sports Med. 2003;31(6):974–980. PubMed ID: 14623666 doi:10.1177/03635465030310063801

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Feeley BT, Kennelly S, Barnes RP, et al. Epidemiology of National Football League training camp injuries from 1998 to 2007. Am J Sports Med. 2008;36(8):1597–1603. PubMed ID: 18443276 doi:10.1177/0363546508316021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Bradley JP, Klimkiewicz JJ, Rytel MJ, Powell JW. Anterior cruciate ligament injuries in the National Football League: epidemiology and current treatment trends among team physicians. Arthroscopy. 2002;18(5):502–509. PubMed ID: 11987061 doi:10.1053/jars.2002.30649

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Bradley J, Honkamp NJ, Jost P, West R, Norwig J, Kaplan LD. Incidence and variance of knee injuries in elite college football players. Am J Orthop. 2008;37(6):310–314. PubMed ID: 18716695

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Kaplan LD, Jost PW, Honkamp N, Norwig J, West R, Bradley JP. Incidence and variance of foot and ankle injuries in elite college football players. Am J Orthop. 2011;40(1):40–44. PubMed ID: 21720586

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Gribble PA, Terada M, Beard MQ, et al. Prediction of lateral ankle sprains in football players based on clinical tests and body mass index. Am J Sports Med. 2016;44(2):460–467. PubMed ID: 26646517 doi:10.1177/0363546515614585

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Dorrel BS, Long T, Shaffer S, Myer GD. Evaluation of the functional movement screen as an injury prediction tool among active adult populations: a systematic review and meta-analysis. Sports Health. 2015;7(6):532–537. PubMed ID: 26502447 doi:10.1177/1941738115607445

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492–501. PubMed ID: 15722287 doi:10.1177/0363546504269591

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hewett TE, Myer GD, Ford KR. Anterior cruciate ligament injuries in female athletes: part 1, mechanisms and risk factors. Am J Sports Med. 2006;34(2):299–311. PubMed ID: 16423913 doi:10.1177/0363546505284183

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Castanharo R, da Luz BS, Bitar AC, D’Elia CO, Castropil W, Duarte M. Males still have limb asymmetries in multijoint movement tasks more than 2 years following anterior cruciate ligament reconstruction. J Orthop Sci. 2011;16(5):531–535. PubMed ID: 21805117 doi:10.1007/s00776-011-0118-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Ford KR, Minning SJ, Myer GD, Mangine RE, Colosimo AJ, Hewett TE. Landing adaptations following isolated lateral meniscectomy in athletes. Knee Surg Sports Traumatol Arthrosc. 2011;19(10):1716–1721. PubMed ID: 21468616 doi:10.1007/s00167-011-1490-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Hartigan EH, Axe MJ, Snyder-Mackler L. Time line for noncopers to pass return-to-sports criteria after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2010;40(3):141–154. PubMed ID: 20195019 doi:10.2519/jospt.2010.3168

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Hurd WJ, Axe MJ, Snyder-Mackler L. Influence of age, gender, and injury mechanism on the development of dynamic knee stability after acute ACL rupture. J Orthop Sports Phys Ther. 2008;38(2):36–41. PubMed ID: 18560190 doi:10.2519/jospt.2008.2609

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Landes S, Nyland J, Elmlinger B, Tillett E, Caborn D. Knee flexor strength after ACL reconstruction: comparison between hamstring autograft, tibialis anterior allograft, and non-injured controls. Knee Surg Sports Traumatol Arthrosc. 2010;18(3):317–324. PubMed ID: 19898836 doi:10.1007/s00167-009-0931-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Paterno MV, Ford KR, Myer GD, Heyl R, Hewett TE. Limb asymmetries in landing and jumping 2 years following anterior cruciate ligament reconstruction. Clin J Sport Med. 2007;17(4):258–262. PubMed ID: 17620778 doi:10.1097/JSM.0b013e31804c77ea

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Paterno MV, Schmitt LC, Ford KR, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38(10):1968–1978. PubMed ID: 20702858 doi:10.1177/0363546510376053

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Rudolph KS, Axe MJ, Buchanan TS, Scholz JP, Snyder-Mackler L. Dynamic stability in the anterior cruciate ligament deficient knee. Knee Surg Sports Traumatol Arthrosc. 2001;9(2):62–71. PubMed ID: 11354855 doi:10.1007/s001670000166

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    The National Collegiate Athletic Association. 2015–2016 NCAA Division I Manual. Indianapolis, IN: The National Collegiate Athletic Association;2015:17.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 141 141 17
Full Text Views 8 8 0
PDF Downloads 9 9 0