The Effect of Functional Movement Training After Anterior Cruciate Ligament Reconstruction: A Randomized Controlled Trial

Click name to view affiliation

Wei-Cheng Chao
Search for other papers by Wei-Cheng Chao in
Current site
Google Scholar
PubMed
Close
,
Jui-Chi Shih
Search for other papers by Jui-Chi Shih in
Current site
Google Scholar
PubMed
Close
,
Kuan-Chung Chen
Search for other papers by Kuan-Chung Chen in
Current site
Google Scholar
PubMed
Close
,
Ching-Lin Wu
Search for other papers by Ching-Lin Wu in
Current site
Google Scholar
PubMed
Close
,
Nai-Yuan Wu
Search for other papers by Nai-Yuan Wu in
Current site
Google Scholar
PubMed
Close
, and
Chien-Sheng Lo
Search for other papers by Chien-Sheng Lo in
Current site
Google Scholar
PubMed
Close
Restricted access

Objectives: To evaluate the effect of functional movement screen (FMS)-based functional exercise in patients after anterior cruciate ligament reconstruction (ACLR). Design: Randomized, controlled, single-blind trial. Setting: Institutional, single center. Patients: A total of 38 patients who underwent ACLR were recruited and randomly assigned to group 1 (n = 19) or group 2 (n = 19). Interventions: Both groups received 6-month routine rehabilitation immediately after surgery. From the postoperative fourth to sixth month, group 1 received FMS-based functional exercise plus routine rehabilitation and group 2 received routine rehabilitation only. The FMS-based functional exercise was individualized and customized functional corrective exercise, which was designed based on the 3-month postoperative FMS results. The frequency of rehabilitation was 1 hour per session, twice a week, for a total duration of 6 months. Main Outcome Measures: At 3 and 6 months postoperatively, patients were evaluated by FMS scoring, Lysholm Knee Score, and International Knee Documentation Committee 2000 Score. Results: After the intervention, both groups had significantly increased FMS, Lysholm Knee Score, and International Knee Documentation Committee 2000 score. Group 1 had significantly greater changes in FMS (median: 4 vs 3, P < .001), Lysholm Knee Score (median: 24 vs 16, P = .001), and International Knee Documentation Committee 2000 Score (median: 22 vs 8, P < .001) than group 2. Conclusion: The application of FMS-based functional exercise to patients after ACLR resulted in significant improvement in knee function and movements. The authors suggested integrating FMS evaluation and FMS-based training into routine post-ACLR rehabilitation programs.

Chao, Chen, and Lo are with the Department of Orthopedics, Show Chwan Memorial Hospital, Changhua, Taiwan. Shih and Wu are with the Graduate Institute of Sports and Health Management, National Chung Hsing University, Taichung, Taiwan. Wu is with the Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan.

Address author correspondence to Chien-Sheng Lo (johnlcs317@gmail.com) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Prodromos CC, Han Y, Rogowski J, Joyce B, Shi K. A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction regimen. Arthroscopy. 2007;23(12):13201325.e6. PubMed ID: 18063176 doi:10.1016/j.arthro.2007.07.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23(6):573578. PubMed ID: 10875418

  • 3.

    Shimokochi Y, Shultz SJ. Mechanisms of noncontact anterior cruciate ligament injury. J Athl Train. 2008;43(4):396408. PubMed ID: 18668173 doi:10.4085/1062-6050-43.4.396

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Ardern CL, Webster KE, Taylor NF, Feller JA. Return to sport following anterior cruciate ligament reconstruction surgery: a systematic review and meta-analysis of the state of play. Br J Sports Med. 2011;45(7):596606. PubMed ID: 21398310 doi:10.1136/bjsm.2010.076364

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Cook G, Burton L, Hoogenboom BJ, Voight M. Functional movement screening: the use of fundamental movements as an assessment of function-Part 2. Int J Sports Phys Ther. 2014;9(4):549563. PubMed ID: 25133083

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Cook G, Burton L, Hoogenboom BJ, Voight M. Functional movement screening: the use of fundamental movements as an assessment of function-Part 1. Int J Sports Phys Ther. 2014;9(3):396409. PubMed ID: 24944860

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Clay H, Mansell J, Tierney R. Association between rowing injuries and the functional movement screen in female collegiate Division I rowers. Int J Sports Phys Ther. 2016;11(3):345349. PubMed ID: 27274420

    • Search Google Scholar
    • Export Citation
  • 8.

    Kiesel K, Plisky PJ, Voight ML. Can serious injury in professional football be predicted by a preseason functional movement screen? N Am J Sports Phys Ther. 2007;2(3):147158. PubMed ID: 21522210

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Martin C, Olivier B, Benjamin N. The functional movement screen in the prediction of injury in adolescent cricket pace bowlers: an observational study. J Sport Rehabil. 2017;26(5):386395. PubMed ID: 27632872 doi:10.1123/jsr.2016-0073

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Kiesel K, Plisky P, Butler R. Functional movement test scores improve following a standardized off-season intervention program in professional football players. Scand J Med Sci Sports. 2011;21(2):287292. PubMed ID: 20030782 doi:10.1111/j.1600-0838.2009.01038.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kraus K, Schutz E, Taylor WR, Doyscher R. Efficacy of the functional movement screen: a review. J Strength Cond Res. 2014;28(12):35713584. PubMed ID: 24918299 doi:10.1519/JSC.0000000000000556

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Peate WF, Bates G, Lunda K, Francis S, Bellamy K. Core strength: a new model for injury prediction and prevention. J Occup Med Toxicol. 2007;2:3. PubMed ID: 17428333 doi:10.1186/1745-6673-2-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Lysholm J, Gillquist J. Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med. 1982;10(3):150154. PubMed ID: 6896798 doi:10.1177/036354658201000306

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Irrgang JJ, Anderson AF, Boland AL, et al. Development and validation of the International Knee Documentation Committee Subjective Knee Form. Am J Sports Med. 2001;29(5):600613. PubMed ID: 11573919 doi:10.1177/03635465010290051301

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Frederick A, Frederick C. Stretch to Win. 2nd ed. Champaign, IL: Human Kinetics; 2006.

  • 16.

    Goldenberg L, Twist P. Strength Ball Training. 2nd ed. Champaign, IL: Human Kinetics; 2006.

  • 17.

    Burkhart SS, Morgan CD, Kibler WB. The disabled throwing shoulder: spectrum of pathology part I: pathoanatomy and biomechanics. Arthroscopy. 2003;19(4):404420. PubMed ID: 12671624 doi:10.1053/jars.2003.50128

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Song HS, Woo SS, So WY, Kim KJ, Lee J, Kim JY. Effects of 16-week functional movement screen training program on strength and flexibility of elite high school baseball players. J Exerc Rehabil. 2014;10(2):124130. PubMed ID: 24877049 doi:10.12965/jer.140101

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Functional Movement Systems, Inc. Functional Movement Screen. https://www.functionalmovement.com. Accessed January 2, 2017.

  • 20.

    Pinczewski LA, Lyman J, Salmon LJ, Russell VJ, Roe J, Linklater J. A 10-year comparison of anterior cruciate ligament reconstructions with hamstring tendon and patellar tendon autograft: a controlled, prospective trial. Am J Sports Med. 2007;35(4):564574. PubMed ID: 17261567 doi:10.1177/0363546506296042

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Salmon L, Russell V, Musgrove T, Pinczewski L, Refshauge K. Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction. Arthroscopy. 2005;21(8):948957. PubMed ID: 16084292 doi:10.1016/j.arthro.2005.04.110

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Wright RW, Dunn WR, Amendola A, et al. Risk of tearing the intact anterior cruciate ligament in the contralateral knee and rupturing the anterior cruciate ligament graft during the first 2 years after anterior cruciate ligament reconstruction: a prospective MOON cohort study. Am J Sports Med. 2007;35(7):11311134. 17452511 doi:10.1177/0363546507301318

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Dvorak J, Junge A, Chomiak J, et al. Risk factor analysis for injuries in football players. Possibilities for a prevention program. Am J Sports Med. 2000;28(5 suppl):6974. PubMed ID: 11032110 doi:10.1177/28.suppl_5.s-69

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Paterno MV, Schmitt LC, Ford KR, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38(10):19681978. PubMed ID: 20702858 doi:10.1177/0363546510376053

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Myer GD, Martin L Jr, Ford KR, et al. No association of time from surgery with functional deficits in athletes after anterior cruciate ligament reconstruction: evidence for objective return-to-sport criteria. Am J Sports Med. 2012;40(10):22562263. PubMed ID: 22879403 doi:10.1177/0363546512454656

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hewett TE, Di Stasi SL, Myer GD. Current concepts for injury prevention in athletes after anterior cruciate ligament reconstruction. Am J Sports Med. 2013;41(1):216224. PubMed ID: 23041233 doi:10.1177/0363546512459638

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Goss DL, Christopher GE, Faulk RT, Moore J. Functional training program bridges rehabilitation and return to duty. J Spec Oper Med. 2009;9(2):2948. PubMed ID: 19813517

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5172 971 109
Full Text Views 116 21 6
PDF Downloads 99 16 3