Athletes Rated as Poor Single-Leg Squat Performers Display Measurable Differences in Single-Leg Squat Biomechanics Compared With Good Performers

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: It is important to validate single-leg squat visual rating criteria used in clinical practice and research. Foot orthoses may improve single-leg squat performance in those who demonstrate biomechanics associated with increased risk of lower limb injury. Objective: Validate visual rating criteria proposed by Crossley et al, by determining whether athletes rated as poor single-leg squat performers display different single-leg squat biomechanics than good performers; and evaluate immediate effects of foot orthoses on single-leg squat biomechanics in poor performers. Design: Comparative cross-sectional study. Setting: University laboratory. Participants: 79 asymptomatic athletes underwent video classification of single-leg squat performance based on established visual rating criteria (overall impression, trunk posture, pelvis “in space,” hip movement, and knee movement), and were rated as good (n = 23), fair (n = 41), or poor (n = 15) performers. Intervention: A subset of good (n = 16) and poor (n = 12) performers underwent biomechanical assessment, completing 5 continuous single-leg squats on their dominant limb while 3-dimensional motion analysis and ground reaction force data were recorded. Poor performers repeated the task standing on prefabricated foot orthoses. Main Outcome Measures: Peak external knee adduction moment (KAM) and peak angles for the trunk, hip, knee, and ankle. Results: Compared with good performers, poor performers had a significantly lower peak KAM (mean difference = 0.11 Nm/kg, 95% confidence interval = 0.02 to 0.2 Nm/kg), higher peak hip adduction angle (−4.3°, −7.6° to −0.9°), and higher peak trunk axial rotation toward their stance limb (3.8°, 0.4° to 7.2°). Foot orthoses significantly increased the peak KAM in poor performers (−0.06 Nm/kg, −0.1 to −0.01 Nm/kg), with values approximating those observed in good performers. Conclusions: Findings validate Crossley et al’s visual rating criteria for single-leg squat performance in asymptomatic athletes, and suggest that “off-the-shelf” foot orthoses may be a simple intervention for poor performers to normalize the magnitude of the external KAM during single-leg squat.

Garrick, Alexander, Schache, Pandy, and Collins are with the Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia. Crossley is with La Trobe Sport and Exercise Medicine Research Centre, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia. Collins is also with the School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, QLD, Australia.

Collins (n.collins1@uq.edu.au) is corresponding author.
  • 1.

    Myer GD, Ford KR, Di Stasi SL, Foss KD, Micheli LJ, Hewett TE. High knee abduction moments are common risk factors for patellofemoral pain (PFP) and anterior cruciate ligament (ACL) injury in girls: is PFP itself a predictor for subsequent ACL injury? Br J Sports Med. 2015;49(2):118122. PubMed ID: 24687011 doi:10.1136/bjsports-2013-092536

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Ageberg E, Bennell KL, Hunt MA, Simic M, Roos EM, Creaby MW. Validity and inter-rater reliability of medio-lateral knee motion observed during a single-limb mini squat. BMC Musculoskelet Disord. 2010;11:265. PubMed ID: 21080945 doi:10.1186/1471-2474-11-265

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Willson JD, Davis IS. Utility of the frontal plane projection angle in females with patellofemoral pain. J Orthop Sports Phys Ther. 2008;38(10):606615. PubMed ID: 18827327 doi:10.2519/jospt.2008.2706

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Nakagawa TH, Moriya ET, Maciel CD, Serrao FV. Trunk, pelvis, hip, and knee kinematics, hip strength, and gluteal muscle activation during a single-leg squat in males and females with and without patellofemoral pain syndrome. J Orthop Sports Phys Ther. 2012;42(6):491501. PubMed ID: 22402604 doi:10.2519/jospt.2012.3987

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Stefanyshyn DJ, Stergiou P, Lun VM, Meeuwisse WH, Worobets JT. Knee angular impulse as a predictor of patellofemoral pain in runners. Am J Sports Med. 2006;34(11):18441851. PubMed ID: 16735584 doi:10.1177/0363546506288753

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Whatman C, Hume P, Hing W. Kinematics during lower extremity functional screening tests in young athletes—Are they reliable and valid? Phys Ther Sport. 2013;14:8793. doi:10.1016/j.ptsp.2012.06.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Crossley KM, Zhang WJ, Schache AG, Bryant A, Cowan SM. Performance on the single-leg squat task indicates hip abductor muscle function. Am J Sports Med. 2011;39(4):866873. PubMed ID: 21335344 doi:10.1177/0363546510395456

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Lack S, Barton C, Malliaras P, Twycross-Lewis R, Woledge R, Morrissey D. The effect of anti-pronation foot orthoses on hip and knee kinematics and muscle activity during a functional step-up task in healthy individuals: a laboratory study. Clin Biomech. 2014;29(2):177182. doi:10.1016/j.clinbiomech.2013.11.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Lack S, Barton C, Woledge R, Laupheimer M, Morrissey D. The immediate effects of foot orthoses on hip and knee kinematics and muscle activity during a functional step-up task in individuals with patellofemoral pain. Clin Biomech. 2014;29(9):10561062. doi:10.1016/j.clinbiomech.2014.08.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Macera CA, Pate RR, Powell KE, Jackson KL, Kendrick JS, Craven TE. Predicting lower-extremity injuries among habitual runners. Arch Intern Med. 1989;149(11):25652568. PubMed ID: 2818115 doi:10.1001/archinte.1989.00390110117026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Niemuth PE, Johnson RJ, Myers MJ, Thieman TJ. Hip muscle weakness and overuse injuries in recreational runners. Clin J Sport Med. 2005;15(1):1421. PubMed ID: 15654186 doi:10.1097/00042752-200501000-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Chmielewski TL, Hodges MJ, Horodyski M, Bishop MD, Conrad BP, Tillman SM. Investigation of clinician agreement in evaluating movement quality during unilateral lower extremity functional tasks: a comparison of 2 rating methods. J Orthop Sports Phys Ther. 2007;37(3):122129. PubMed ID: 17416127 doi:10.2519/jospt.2007.2457

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hollman JH, Ginos BE, Kozuchowski J, Vaughn AS, Krause DA, Youdas JW. Relationships between knee valgus, hip-muscle strength, and hip-muscle recruitment during a single-limb step-down. J Sport Rehabil. 2009;18(1):104117. PubMed ID: 19321910 doi:10.1123/jsr.18.1.104

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Schache AG, Blanch PD, Dorn TW, Brown NA, Rosemond D, Pandy MG. Effect of running speed on lower limb joint kinetics. Med Sci Sports Exerc. 2011;43(7):12601271. PubMed ID: 21131859 doi:10.1249/MSS.0b013e3182084929

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Nguyen TC, Baker R. Two methods of calculating thorax kinematics in children with myelomeningocele. Clin Biomech. 2004;19(10):10601065. doi:10.1016/j.clinbiomech.2004.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Wyndow N, De Jong A, Rial K, et al. The relationship of foot and ankle mobility to the frontal plane projection angle in asymptomatic adults. J Foot Ankle Res. 2016;9:3. PubMed ID: 26816531 doi:10.1186/s13047-016-0134-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Sullivan GM, Feinn R. Using effect size-or why the P value is not enough. J Grad Med Educ. 2012;4(3):279282. PubMed ID: 23997866 doi:10.4300/JGME-D-12-00156.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Horan SA, Watson SL, Carty CP, Sartori M, Weeks BK. Lower-limb kinematics of single-leg squat performance in young adults. Physiother Can. 2014;66(3):228233. PubMed ID: 25125775 doi:10.3138/ptc.2013-09

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Mauntel TC, Frank BS, Begalle RL, Blackburn JT, Padua DA. Kinematic differences between those with and without medial knee displacement during a single-leg squat. J Appl Biomech. 2014;30(6):707712. PubMed ID: 25009951 doi:10.1123/jab.2014-0003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Whatman C, Hume P, Hing W. The reliability and validity of physiotherapist visual rating of dynamic pelvis and knee alignment in young athletes. Phys Ther Sport. 2013;14(3):168174. PubMed ID: 23107340 doi:10.1016/j.ptsp.2012.07.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Raisanen A, Pasanen K, Krosshaug T, Avela J, Perttunen J, Parkkari J. Single-leg squat as a tool to evaluate young athletes’ frontal plane knee control. Clin J Sport Med. 2016;26(6):478482. PubMed ID: 26704374 doi:10.1097/JSM.0000000000000288

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Shelburne KB, Torry MR, Steadman JR, Pandy MG. Effects of foot orthoses and valgus bracing on the knee adduction moment and medial joint load during gait. Clin Biomech. 2008;23(6):814821. doi:10.1016/j.clinbiomech.2008.02.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Schmalz T, Blumentritt S, Drewitz H, Freslier M. The influence of sole wedges on frontal plane knee kinetics, in isolation and in combination with representative rigid and semi-rigid ankle-foot-orthoses. Clin Biomech. 2006;21(6):631639. doi:10.1016/j.clinbiomech.2006.02.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Willson JD, Davis IS. Lower extremity mechanics of females with and without patellofemoral pain across activities with progressively greater task demands. Clin Biomech. 2008;23(2):203211. doi:10.1016/j.clinbiomech.2007.08.025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Dierks TA, Manal KT, Hamill J, Davis IS. Proximal and distal influences on hip and knee kinematics in runners with patellofemoral pain during a prolonged run. J Orthop Sports Phys Ther. 2008;38(8):448456. PubMed ID: 18678957 doi:10.2519/jospt.2008.2490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    McKenzie K, Galea V, Wessel J, Pierrynowski M. Lower extremity kinematics of females with patellofemoral pain syndrome while stair stepping. J Orthop Sports Phys Ther. 2010;40(10):625632. PubMed ID: 20811165 doi:10.2519/jospt.2010.3185

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Willson JD, Davis IS. Lower extremity strength and mechanics during jumping in women with patellofemoral pain. J Sport Rehabil. 2009;18(1):7690. PubMed ID: 19321908 doi:10.1123/jsr.18.1.76

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Myer GD, Ford KR, Barber Foss KD, et al. The incidence and potential pathomechanics of patellofemoral pain in female athletes. Clin Biomech. 2010;25(7):700707. doi:10.1016/j.clinbiomech.2010.04.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Collins N, Bisset L, McPoil T, Vicenzino B. Foot orthoses in lower limb overuse conditions: a systematic review and meta-analysis. Foot Ankle Int. 2007;28(3):396412. PubMed ID: 17371668 doi:10.3113/FAI.2007.0396

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Barton CJ, Menz HB, Crossley KM. The immediate effects of foot orthoses on functional performance in individuals with patellofemoral pain syndrome. Br J Sports Med. 2011;45(3):193197. PubMed ID: 20647297 doi:10.1136/bjsm.2009.069203

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Barton CJ, Menz HB, Crossley KM. Effects of prefabricated foot orthoses on pain and function in individuals with patellofemoral pain syndrome: a cohort study. Phys Ther Sport. 2011;12(2):7075. PubMed ID: 21496768 doi:10.1016/j.ptsp.2010.09.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 565 435 31
Full Text Views 34 25 9
PDF Downloads 12 6 0