Effects of Peroneal Muscles Fatigue on Dynamic Stability Following Lateral Hop Landing: Time to Stabilization Versus Dynamic Postural Stability Index

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Dynamic stability is a necessary requirement in many sports competitions. Muscle fatigue, which can impair stability, may be occurred in many sports competitions in which lateral movements and landing repeated frequently. Objective: To assess the effects of peroneal muscles fatigue on dynamic stability following lateral hop landing through measuring time to stabilization (TTS) and dynamic postural stability index (DPSI). Design: Quasi-experimental. Setting: Laboratory study. Participants: A total of 20 recreationally active, healthy males with no lower-extremity injury during the previous 6 months participated in this study. Intervention: Participants performed a lateral hop on a force plate before and immediately after a fatigue intervention using a Biodex dynamometer. For inducing fatigue, the participant made a prolonged eversion effort with 40% of the maximal voluntary contraction. Fatigue was met when the eversion torque declined by 50% of the initial value. TTS and DPSI were calculated using sequential averaging method and relevant formulas, respectively. Main Outcome Measures: Premeasures and postmeasures of TTS in the anteroposterior, mediolateral and vertical directions, resultant vector of TTS, stability indices in the anteroposterior, mediolateral and vertical directions, and DPSI. Results: Means of the DPSI or its components did not change significantly due to fatigue (P > .05). Means of the TTS in the anteroposterior and mediolateral directions, and the mean of the resultant vector of the TTS increased significantly after fatigue (P < .05). Conclusions: The question that the dynamic stability is affected or not affected by fatigue depends on which of the TTS or DPSI is used for analysis. The TTS may be a sensitive measure to detect subtle changes in postural stability due to fatigue. But, the DPSI which may be changed after a more strenuous fatigue may be related to actual fatiguing situations.

Malmir, Olyaei, Talebian, and Ganguie are with Physical Therapy Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran. Jamshidi is with Physical Therapy Department, School of Rehabilitation, Iran University of Medical Sciences, Tehran, Iran.

Olyaei (olyaeigh@tums.ac.ir) is corresponding author.
  • 1.

    Mckeon PO, Hertel J. Systematic review of postural control and lateral ankle instability, Part II: is balance training clinically effective. J Athl Train. 2008;43(3):305–315. PubMed ID: 18523567 doi:10.4085/1062-6050-43.3.305

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Massion J. Postural control system. Curr Opin Neurobiol. 1994;4(6):877–887. PubMed ID: 7888772 doi:10.1016/0959-4388(94)90137-6

  • 3.

    Steib S, Zech A, Hentschke C, Pfeifer K. Fatigue-induced alterations of static and dynamic postural control in athletes with a history of ankle sprain. J Athl Train. 2013;48(2):203–208. PubMed ID: 23672384 doi:10.4085/1062-6050-48.1.08

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Wikstrom EA, Tillman MD, Smith AN, Borsa PA. A new force-plate technology measure of dynamic postural stability: the dynamic postural stability index. J Athl Train. 2005;40(4):305–309. PubMed ID: 16404452

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Ross SE, Guskiewicz KM. Time to stabilization: a method for analyzing dynamic postural stability. Athl Ther Today. 2003;8(3):37–39. doi:10.1123/att.8.3.37

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Wikstrom EA, Arrigenna MA, Tillman MD, Borsa PA. Dynamic postural stability in subjects with braced, functionally unstable ankles. J Athl Train. 2006;41(3):245–250. PubMed ID: 17043691

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Ross SE, Guskiewicz KM. Examination of static and dynamic postural stability in individuals with functionally stable and unstable ankles. Clin J Sport Med. 2004;14(6):332–338. PubMed ID: 15523204 doi:10.1097/00042752-200411000-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Fransz DP, Huurnink A, De Boode VA, Kingma I, van Dieën JH. Time to stabilization in single leg drop jump landings: an examination of calculation methods and assessment of differences in sample rate, filter settings and trial length on outcome values. Gait Posture. 2015;41(1):63–69. PubMed ID: 25242295 doi:10.1016/j.gaitpost.2014.08.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Meardon S, Klusendorf A, Kernozek T. Influence of injury on dynamic postural control in runners. Int J Sports Phys Ther. 2016;11(3):366–377. PubMed ID: 27274423

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Wikstrom EA, Tillman MD, Chmielewski T, Cauraugh JH, Naugle KE, Borsa PA. Dynamic postural control but not mechanical stability differs among those with and without chronic ankle instability. Scand J Med Sci Sports. 2010;20(1):137–144. PubMed ID: 19422654 doi:10.1111/j.1600-0838.2009.00929.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Duprey KM, Liu K, Cronholm PF, et al. Baseline time to stabilization identifies anterior cruciate ligament rupture risk in collegiate athletes. Am J Sports Med. 2016;44(6):1487–1491. PubMed ID: 26920429 doi:10.1177/0363546516629635

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Wikstrom EA, Powers ME, Tillma MD. Dynamic stabilization time after isokineticand functional fatigue. J Athl Train. 2004;39(3):247–253. PubMed ID: 15496994

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Dayakidis MK, Boudolos K. Ground reaction force data in functional ankle instability during two cutting movements. Clin Biomech. 2006;21(4):405–411. doi:10.1016/j.clinbiomech.2005.11.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Borowski LA, Yard EE, Fields SK, Comstock RD. The epidemiology of US high school basketball injuries, 2005–2007. Am J Sports Med. 2008;36(12):2328–2335. PubMed ID: 18765675 doi:10.1177/0363546508322893

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Kofotolis ND, Kellis E, Vlachopoulos SP. Ankle sprain injuries and risk factors in amateur soccer players during a 2-year period. Am J Sports Med. 2007;35(3):458–466. PubMed ID: 17218660 doi:10.1177/0363546506294857

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Malmir K, Olyaei GR, Talebian S, Jamshidi AA. Comparing the effects of peroneal muscle fatigue and cyclic loading on ankle neuromuscular control during lateral-hop landing. J Sport Rehabil. 2015;24(3):293–299. PubMed ID: 25365739 doi:10.1123/jsr.2014-0165

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Gribble PA, Hertel J, Denegar CR, Buckley WE. The effects of fatigue and chronic ankle instability on dynamic postural control. J Athl Train. 2004;39(4):321–329. PubMed ID: 15592604

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Konradsen L, Voigt M, Hojsgaard C. Ankle inversion injuries: the role of the dynamic defense mechanism. Am J Sports Med. 1997;25(1):54–58. PubMed ID: 9006692 doi:10.1177/036354659702500110

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Yu B, Gabriel D, Noble L, An K-N. Estimate of the optimal cutoff frequency for the Butterworth low-pass digital filter. J App Biomech. 1999;15:318–329. doi:10.1123/jab.15.3.318

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Wright CJ, Arnold Bl, Ross SE. Altered kinematics and time to stabilization during drop-jump landings in individuals with or without functional ankle instability. J Athl Train. 2016;51(1):5–15. PubMed ID: 26794631 doi:10.4085/1062-6050-51.2.10

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Shaw MY, Gribble PA, Frye Jl. Ankle bracing, fatigue, and time to stabilization in collegiate volleyball athletes. J Athl Train. 2008;43(2):164–171. PubMed ID: 18345341 doi:10.4085/1062-6050-43.2.164

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Ross SE, Guskiewicz KM, Gross MT, Yu B. Balance measures for discriminating between functionally unstable and stable ankles. Med Sci Sports Exerc. 2009;41(2):399–407. PubMed ID: 19127184 doi:10.1249/MSS.0b013e3181872d89

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Brazen DM, Todd MK, Ambegaonkar JP, Wunderlich R, Peterson C. The effect of fatigue on landing biomechanics in single-leg drop landings. Clin J Sport Med. 2010;20(4):286–292. PubMed ID: 20606514 doi:10.1097/JSM.0b013e3181e8f7dc

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Wikstrom EA, Tillman MD, Chmielewski TL, Cauraugh JH, Borsa PA. Dynamic postural stability deficits in subjects with self-reported ankle instability. Med Sci Sports Exerc. 2007;39(3):397–402. PubMed ID: 17473764 doi:10.1249/mss.0b013e31802d3460

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Liu K, Heise GD. The effect of jump-landing directions on dynamic stability. J Appl Biomech. 2013;29(5):634–638. PubMed ID: 23182979 doi:10.1123/jab.29.5.634

  • 26.

    Salavati M, Moghadam M, Ebrahimi I, Arab AM. Changes in postural stability with fatigue of lower extremity frontal and sagittal plane movers. Gait Posture. 2007;26(2):214–218. PubMed ID: 17049237 doi:10.1016/j.gaitpost.2006.09.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Chaudhry H, Findley T, Quigley KS, et al. Postural stability index is a more valid measure of stability than equilibrium score. J Rehabil Res Dev. 2005;42(4):547–556. PubMed ID: 16320149 doi:10.1682/JRRD.2004.08.0097

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 112 112 17
Full Text Views 8 8 0
PDF Downloads 8 8 0