Comparison of a Vibration Roller and a Nonvibration Roller Intervention on Knee Range of Motion and Pressure Pain Threshold: A Randomized Controlled Trial

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Background: Roller massage (RM) has become a common intervention among health and fitness professionals. Recently, manufacturers have merged the science of vibration therapy and RM with the development of vibration rollers. Of interest, is the therapeutic effects of such RM devices. Purpose: The purpose of this study was to compare the effects of a vibration roller and nonvibration roller intervention on prone knee-flexion passive range of motion (ROM) and pressure pain threshold (PPT) of the quadriceps musculature. Methods: Forty-five recreationally active adults were randomly allocated to one of 3 groups: vibration roller, nonvibration roller, and control. Each roller intervention lasted a total of 2 minutes. The control group did not roll. Dependent variables included prone knee-flexion ROM and PPT measures. Statistical analysis included parametric and nonparametric tests to measure changes among groups. Results: The vibration roller demonstrated the greatest increase in PPT (180 kPa, P < .001), followed by the nonvibration roller (112 kPa, P < .001) and control (61 kPa, P < .001). For knee flexion ROM, the vibration roller demonstrated the greatest increase in ROM (7°, P < .001), followed by the nonvibration roller (5°, P < .001) and control (2°, P < .001). Between groups, there was a significant difference in PPT between the vibration and nonvibration roller (P = .03) and vibration roller and control (P < .001). There was also a significant difference between the nonvibration roller and control (P < .001). For knee ROM, there was no significant difference between the vibration and nonvibration roller (P = .31). A significant difference was found between the vibration roller and control group (P < .001) and nonvibration roller and control group (P < .001). Conclusion: The results suggest that a vibration roller may increase an individual’s tolerance to pain greater than a nonvibration roller. This investigation should be considered a starting point for future research on this technology.

Cheatham is with California State University Dominguez Hills, Carson, CA. Stull is with the National Academy of Sports Medicine, Phoenix, AZ. Kolber is with the Department of Physical Therapy, Nova Southeastern University, Ft Lauderdale, FL.

Cheatham (Scheatham@csudh.edu) is corresponding author.
  • 1.

    Beardsley C, Skarabot J. Effects of self-myofascial release: a systematic review. J Bodyw Mov Ther. 2015;19(4):747–758. PubMed ID: 26592233 doi:10.1016/j.jbmt.2015.08.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Cheatham SW, Kolber MJ, Cain M, Lee M. The effects of selfmyofascial release using a foam roll or roller massager on joint range of motion, muscle recovery, and performance: a systematic review. Int J Sports Phys Ther. 2015;10(6):827–838. PubMed ID: 26618062

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Schroeder AN, Best TM. Is self myofascial release an effective preexercise and recovery strategy? A literature review. Curr Sports Med Rep. 2015;14(3):200–208. PubMed ID: 25968853 doi:10.1249/JSR.0000000000000148

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Aboodarda SJ, Spence AJ, Button DC. Pain pressure threshold of a muscle tender spot increases following local and non-local rolling massage. BMC Musculoskelet Disord. 2015;16:265. PubMed ID: 26416265 doi:10.1186/s12891-015-0729-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Okamoto T, Masuhara M, Ikuta K. Acute effects of self-myofascial release using a foam roller on arterial function. J Strength Cond Res. 2014;28(1):69–73. PubMed ID: 23575360 doi:10.1519/JSC.0b013e31829480f5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Curran PF, Fiore RD, Crisco JJ. A comparison of the pressure exerted on soft tissue by 2 myofascial rollers. J Sport Rehabil. 2008;17(4):432–442. PubMed ID: 19160916 doi:10.1123/jsr.17.4.432

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Anwer S, Alghadir A, Zafar H, Al-Eisa E. Effect of whole body vibration training on quadriceps muscle strength in individuals with knee osteoarthritis: a systematic review and meta-analysis. Physiotherapy. 2016;102(2):145–151. PubMed ID: 26619822 doi:10.1016/j.physio.2015.10.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Li X, Wang XQ, Chen BL, Huang LY, Liu Y. Whole-body vibration exercise for knee osteoarthritis: a systematic review and meta-analysis. Evid Based Complement Alternat Med. 2015;2015:758147. PubMed ID: 26347287

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Ma C, Liu A, Sun M, Zhu H, Wu H. Effect of whole-body vibration on reduction of bone loss and fall prevention in postmenopausal women: a meta-analysis and systematic review. J Orthop Surg Res. 2016;11:24. PubMed ID: 26888467 doi:10.1186/s13018-016-0357-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Luo X, Zhang J, Zhang C, He C, Wang P. The effect of whole-body vibration therapy on bone metabolism, motor function, and anthropometric parameters in women with postmenopausal osteoporosis. Disabil Rehabil. 2017;39(22):2315–2323. doi:10.1080/09638288.2016.1226417

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Slatkovska L, Alibhai SM, Beyene J, Cheung AM. Effect of whole-body vibration on BMD: a systematic review and meta-analysis. Osteoporos Int. 2010;21(12):1969–1980. PubMed ID: 20407890 doi:10.1007/s00198-010-1228-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Palop Montoro MV, Parraga Montilla JA, Lozano Aguilera E, Arteaga Checa M. The vibration training as sarcopenia intervention: impact on the neuromuscular system of the elderly. Nutr Hosp. 2015;32(4):1454–1461. PubMed ID: 26545504

    • Search Google Scholar
    • Export Citation
  • 13.

    Kaeding TS. Sarcopenia and whole body vibration training: an overview. Z Gerontol Geriatr. 2009;42(2):88–92. PubMed ID: 18726053 doi:10.1007/s00391-008-0565-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    del Pozo-Cruz B, Hernandez Mocholi MA, Adsuar JC, Parraca JA, Muro I, Gusi N. Effects of whole body vibration therapy on main outcome measures for chronic non-specific low back pain: a single-blind randomized controlled trial. J Rehabil Med. 2011;43(8):689–694. PubMed ID: 21687923 doi:10.2340/16501977-0830

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Yang J, Seo D. The effects of whole body vibration on static balance, spinal curvature, pain, and disability of patients with low back pain. J Phys Ther Sci. 2015;27(3):805–808. PubMed ID: 25931735 doi:10.1589/jpts.27.805

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Pistone EM, Laudani L, Camillieri G, et al. Effects of early whole-body vibration treatment on knee neuromuscular function and postural control after anterior cruciate ligament reconstruction: a randomized controlled trial. J Rehabil Med. 2016;48(10):880–886. PubMed ID: 27735985 doi:10.2340/16501977-2150

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Costantino C, Gimigliano R, Olvirri S, Gimigliano F. Whole body vibration in sport: a critical review. J Sports Med Phys Fitness. 2014;54(6):757–764. PubMed ID: 24998609

    • Search Google Scholar
    • Export Citation
  • 18.

    Cochrane D. The sports performance application of vibration exercise for warm-up, flexibility and sprint speed. Eur J Sport Sci. 2013;13(3):256–271. PubMed ID: 23679142 doi:10.1080/17461391.2011.606837

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Dabbs NC, Black CD, Garner JC. Effects of whole body vibration on muscle contractile properties in exercise induced muscle damaged females. J Electromyogr Kinesiol. 2016;30:119–125. PubMed ID: 27371905 doi:10.1016/j.jelekin.2016.06.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Cheung WH, Li CY, Zhu TY, Leung KS. Improvement in muscle performance after one-year cessation of low-magnitude high-frequency vibration in community elderly. J Musculoskelet Neuronal Interact. 2016;16(1):4–11. PubMed ID: 26944817

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Tseng SY, Lai CL, Chang KL, Hsu PS, Lee MC, Wang CH. Influence of whole-body vibration training without visual feedback on balance and lower-extremity muscle strength of the elderly: a randomized controlled trial. Medicine. 2016;95(5):2709. doi:10.1097/MD.0000000000002709

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Karatrantou K, Gerodimos V, Dipla K, Zafeiridis A. Whole-body vibration training improves flexibility, strength profile of knee flexors, and hamstrings-to-quadriceps strength ratio in females. J Sci Med Sport. 2013;16(5):477–481. PubMed ID: 23253266 doi:10.1016/j.jsams.2012.11.888

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Feland JB, Hawks M, Hopkins JT, Hunter I, Johnson AW, Eggett DL. Whole body vibration as an adjunct to static stretching. Int J Sports Med. 2010;31(8):584–589. PubMed ID: 20535662 doi:10.1055/s-0030-1254084

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Houston MN, Hodson VE, Adams KK, Hoch JM. The effectiveness of whole-body-vibration training in improving hamstring flexibility in physically active adults. J Sport Rehabil. 2015;24(1):77–82. PubMed ID: 25606860 doi:10.1123/jsr.2013-0059

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Rittweger J. Vibration as an exercise modality: how it may work, and what its potential might be. Eur J Appl Physiol. 2010;108(5):877–904. PubMed ID: 20012646 doi:10.1007/s00421-009-1303-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Cochrane DJ. Effectiveness of using wearable vibration therapy to alleviate muscle soreness. Eur J Appl Physiol. 2017;117(3):501–509. PubMed ID: 28168554 doi:10.1007/s00421-017-3551-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Veqar Z, Imtiyaz S. Vibration therapy in management of delayed onset muscle soreness (DOMS). J Clin Diagn Res. 2014;8(6):Le01–Le04. PubMed ID: 25121012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Cerciello S, Rossi S, Visona E, Corona K, Oliva F. Clinical applications of vibration therapy in orthopaedic practice. Muscles Ligaments Tendons J. 2016;6(1):147–156. PubMed ID: 27331044

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Kosar AC, Candow DG, Putland JT. Potential beneficial effects of whole-body vibration for muscle recovery after exercise. J Strength Cond Res. 2012;26(10):2907–2911. PubMed ID: 22130390 doi:10.1519/JSC.0b013e318242a4d3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Garcia-Gutierrez MT, Guillen-Rogel P, Cochrane DJ, et al. Cross transfer acute effects of foam rolling with vibration on ankle dorsiflexion range of motion. J Musculoskelet Neuronal Interact. 2018;18(2):262–267

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Lee CL, Chu IH, Lyu BJ, et al. Comparison of vibration rolling, nonvibration rolling, and static stretching as a warm-up exercise on flexibility, joint proprioception, muscle strength, and balance in young adults. J Sports Sci. 2018:1–8.

    • Search Google Scholar
    • Export Citation
  • 32.

    Gordon CM, Lindner SM, Birbaumer N, et al. Self-myofascial vibro-shearing: a randomized controlled trial of biomechanical and related changes in male breakdancers. Sports Med Open. 2018;4(1):13

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Roach S, San Juan JG, Suprak DN, Lyda M. Concurrent validity of digital inclinometer and universal goniometer in assessing passive hip mobility in healthy subjects. Int J Sports Phys Ther. 2013;8(5):680–688. PubMed ID: 24175147

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Romero-Franco N, Montano-Munuera JA, Jimenez-Reyes P. Validity and reliability of a digital inclinometer to assess knee joint position sense in a closed kinetic chain. J Sport Rehabil. 2017;26(1):1–22. doi:10.1123/jsr.2017-0221

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Konor MM, Morton S, Eckerson JM, Grindstaff TL. Reliability of three measures of ankle dorsiflexion range of motion. Int J Sports Phys Ther. 2012;7(3):279–287. PubMed ID: 22666642

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Gnat R, Kuszewski M, Koczar R, Dziewon´ska A. Reliability of the passive knee flexion and extension tests in healthy subjects. J Manipulative Physiol Ther. 2010;33(9):659–665. PubMed ID: 21109056 doi:10.1016/j.jmpt.2010.09.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Chesterton LS, Sim J, Wright CC, Foster NE. Interrater reliability of algometry in measuring pressure pain thresholds in healthy humans, using multiple raters. Clin J Pain. 2007;23(9):760–766. PubMed ID: 18075402 doi:10.1097/AJP.0b013e318154b6ae

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Nussbaum EL, Downes L. Reliability of clinical pressure-pain algometric measurements obtained on consecutive days. Phys Ther. 1998;78(2):160–169. PubMed ID: 9474108 doi:10.1093/ptj/78.2.160

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Walton DM, Macdermid JC, Nielson W, Teasell RW, Chiasson M, Brown L. Reliability, standard error, and minimum detectable change of clinical pressure pain threshold testing in people with and without acute neck pain. J Orthop Sports Phys Ther. 2011;41(9):644–650. PubMed ID: 21885906 doi:10.2519/jospt.2011.3666

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Cheatham SW, Kolber MJ, Cain M. Comparison of a video-guided, live instructed, and self-guided foam roll interventions on knee joint range of motion and pressure pain threshold: a randomized controlled trial. Int J Sports Phys Ther 2017;12(2):1–8.

    • Search Google Scholar
    • Export Citation
  • 41.

    Cheatham SW, Kolber MJ. Does self-myofascial release with a foam roll change pressure pain threshold of the ipsilateral lower extremity antagonist and contralateral muscle groups? An exploratory study. J Sport Rehabil. 2017;2:1–18.

    • Search Google Scholar
    • Export Citation
  • 42.

    Lee SY, Sung KH, Chung CY, et al. Reliability and validity of the Duncan-Ely test for assessing rectus femoris spasticity in patients with cerebral palsy. Dev Med Child Neurol. 2015;57(10):963–968. PubMed ID: 25846806 doi:10.1111/dmcn.12761

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Marks MC, Alexander J, Sutherland DH, Chambers HG. Clinical utility of the Duncan-Ely test for rectus femoris dysfunction during the swing phase of gait. Dev Med Child Neurol. 2003;45(11):763–768. PubMed ID: 14580132 doi:10.1111/j.1469-8749.2003.tb00886.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Peeler J, Anderson JE. Reliability of the Ely’s test for assessing rectus femoris muscle flexibility and joint range of motion. J Orthop Res. 2008;26(6):793–799. PubMed ID: 18186129 doi:10.1002/jor.20556

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Pearcey GE, Bradbury-Squires DJ, Kawamoto JE, Drinkwater EJ, Behm DG, Button DC. Foam rolling for delayed-onset muscle soreness and recovery of dynamic performance measures. J Athl Train. 2015;50(1):5–13. PubMed ID: 25415413 doi:10.4085/1062-6050-50.1.01

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Portney LG, Watkins MP. Foundations of Clinical Research: Applications to Practice. Upper Saddle River, NJ: Pearson/Prentice Hall; 2009.

    • Search Google Scholar
    • Export Citation
  • 47.

    Dugard P, Todman J. Analysis of pre‐test‐post‐test control group designs in educational research. Educational Psychol. 1995;15(2):181–198. doi:10.1080/0144341950150207

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Cohen J. A power primer. Psychol Bull. 1992;112(1):155–159. PubMed ID: 19565683 doi:10.1037/0033-2909.112.1.155

  • 49.

    Kelly S, Beardsley C. Specific and cross-over effects of foam rolling on ankle dorsiflexion range of motion. Int J Sports Phys Ther. 2016;11(4):544–551. PubMed ID: 27525179

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Young JD, Spence AJ, Behm DG. Roller massage decreases spinal excitability to the soleus. J Appl Physiol (1985). 2018;16:265. PubMed ID: 26416265 doi:10.1186/s12891-015-0729-5

    • Search Google Scholar
    • Export Citation
  • 51.

    Jay K, Sundstrup E, Sondergaard SD, et al. Specific and cross over effects of massage for muscle soreness: randomized controlled trial. Int J Sports Phys Ther. 2014;9(1):82–91. PubMed ID: 24567859

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Amann M, Sidhu SK, Weavil JC, Mangum TS, Venturelli M. Autonomic responses to exercise: group III/IV muscle afferents and fatigue. Auton Neurosci. 2015;188:19–23. PubMed ID: 25458423 doi:10.1016/j.autneu.2014.10.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Blain GM, Mangum TS, Sidhu SK, et al. Group III/IV muscle afferents limit the intramuscular metabolic perturbation during whole body exercise in humans. J Physiol. 2016;594(18):5303–5315. PubMed ID: 27241818 doi:10.1113/JP272283

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Pietrangelo T, Mancinelli R, Toniolo L, et al. Effects of local vibrations on skeletal muscle trophism in elderly people: mechanical, cellular, and molecular events. Int J Mol Med. 2009;24(4):503–512. PubMed ID: 19724891 doi:10.3892/ijmm_00000259

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 942 942 113
Full Text Views 26 26 3
PDF Downloads 27 27 2