Effectiveness of Salted Ice Bag Versus Cryocompression on Decreasing Intramuscular and Skin Temperature

in Journal of Sport Rehabilitation

Click name to view affiliation

Jennifer Ostrowski
Search for other papers by Jennifer Ostrowski in
Current site
Google Scholar
PubMed
Close
,
Angelina Purchio
Search for other papers by Angelina Purchio in
Current site
Google Scholar
PubMed
Close
,
Maria Beck
Search for other papers by Maria Beck in
Current site
Google Scholar
PubMed
Close
, and
JoLynn Leisinger
Search for other papers by JoLynn Leisinger in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: Rest, ice, compression, and elevation are commonly recommended immediately after injury. Traditionally, ice bag (IB) with elastic wrap compression has been utilized; however, recently intermittent cryocompression units are being used. Limited research has evaluated tissue temperature decreases with intermittent cryocompression units. Objective: Evaluate magnitude of muscle and skin cooling. Design: Repeated-measures counterbalanced study. Setting: University research laboratory. Patients or Other Participants: Twelve healthy college-aged participants (4 males and 8 females; age = 23.08 [1.93] y; height = 171.66 [9.47] cm; mass = 73.67 [13.46] kg; subcutaneous thickness = 0.90 [0.35] cm) without compromised circulation or injury. Intervention(s): Salted IB, GameReady (GR), and PowerPlay-ice bag (PP-ice) were applied to the posterior aspect of the nondominant calf for 30 minutes; participants underwent each treatment in counterbalanced order. Main Outcome Measure(s): Muscle temperature measured via 21-gauge catheter thermocouple; skin temperature measured via a surface thermocouple. Temperatures were recorded at baseline and during a 30-minute treatment. Correlations were evaluated between muscle and skin temperatures. Results: Nonsignificant treatment × time interaction and nonsignificant main effect of treatment for intramuscular cooling. Mean Decrease From Baseline: IB, 6.4°C (±2.8); GR, 5.4°C (±1.1); PP-ice, 4.8°C (±2.8). Nonsignificant treatment × time interaction for skin cooling (F20,200 = 1.440, P = .65, ηp2=.346, and observed β = 0.773), but significant main effect for treatment (F10,100 = 5.279, P = .03, ηp2=.883, and observed β = 1.00). Mean Decrease From Baseline: IB, 17.0°C; GR, 16.4°C; PP-ice, 14.6°C. No significant correlation between intramuscular and skin temperatures in any condition at any time point. No significant correlation between adipose tissue thickness and maximum temperature decrease with any modality. Conclusions: Salted IB with elastic wrap compression, GR, and PP-ice produced equivalent intramuscular temperature decreases during the treatment period.

Ostrowski is Director of the Doctor of Athletic Training Program, Moravian College, Bethlehem, PA, Purchio, Beck, and Leisinger are with Weber State University, Ogden, UT.

Ostrowski (ostrowskij@moravian.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    van den Bekerom M, Struijs P, Blankevoort L, Welling L, van Dijk C, Kerkhoffs G. What is the evidence for rest, ice, compression, and elevation therapy in the treatment of ankle sprains in adults? J Athl Train. 2012;47(4):435443. PubMed ID: 22889660 doi:10.4085/1062-6050-47.4.14

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Seiyama A, Shiga T, Maeda N. Temperature effect o oxygenation and metabolism of perfused rat hindlimb muscle. Adv Exp Med Biol. 1990;277:541547. PubMed ID: 1965761

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Abramson D, Kahn A, Tuck S, Turman G, Rejal H, Fleischer C. Relationship between a range of tissue temperature and local oxygen uptake in the human forearm. Lab Clin Med. 1957;50:789793.

    • Search Google Scholar
    • Export Citation
  • 4.

    Gregson W, Black M, Jones H, et al. Influence of cold water immersion on limb and cutaneous blood flow at rest. Am J Sports Med. 2011;39(6):13161323. PubMed ID: 21335348 doi:10.1177/0363546510395497

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Deal D, Tipton J, Rosencrance E, Curl W, Smith T. Ice reduces edema. A study of microvascular permeability in rats. J Bone Joint Surg Am. 2002;84A(9):15731578. doi:10.2106/00004623-200209000-00009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Schwartz D, Kaplin K, Schwartz S. Hemostasis, surgical bleeding, and transfusion. In: Brunciardi F, Anderson D, Billiar T, et al., eds. Principles of Surgery. Vol 8. 2nd ed. New York, NY: McGraw-Hill Book Co; 2005.

    • Search Google Scholar
    • Export Citation
  • 7.

    Knight K. Cryotherapy in Sport Injury Management. Champaign, IL: Human Kinetics; 1995:301.

  • 8.

    Algafly A, George K. The effect of cryotherapy on nerve conduction velocity, pain threshold and pain tolerance. Br J Sports Med. 2007;41(6):365369. PubMed ID: 17224445 doi:10.1136/bjsm.2006.031237

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Eldred E, Lindsley D, Buchwald J. The effect of cooling on mammalian muscle spindles. Exp Neurol. 1960;2:144157. PubMed ID: 13819871 doi:10.1016/0014-4886(60)90004-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Knight K, Draper D. Therapeutic Modalities: The Art and Science. 2nd ed. Baltimore, MD: Lippincott Williams & Wilkins; 2013.

  • 11.

    Merrick M. Secondary injury after musculoskeletal trauma: a review and update. J Athl Train. 2002;37(2):209217. PubMed ID: 16558673

  • 12.

    Kehrer J. Free radicals as mediators of tissue injury and diseases. Rev Toxicol. 1993;23(1):2143. doi:10.3109/10408449309104073

  • 13.

    Oliveira N, Rainero E, Salvini T. Three intermittent sessions of cryotherapy reduce the secondary muscle injury in skeletal muscle of rat. J Sport Sci Med. 2006;5:228234.

    • Search Google Scholar
    • Export Citation
  • 14.

    Long B, Knight K, Hopkins T, Parcell A, Feland J. Production of consistent pain by intermittent infusion of sterile 5% hypertonic saline, followed by decrease of pain with cryotherapy. J Sport Rehabil. 2012;21(3):225230. PubMed ID: 22894975 doi:10.1123/jsr.21.3.225

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Dykstra J, Hill H, Miller M, Cheatham C, Michael T, Baker R. Comparisons of cubed ice, crushed ice, and wetted ice on intramuscular and surface temperature changes. J Athl Train. 2009;44(2):136141. PubMed ID: 19295957 doi:10.4085/1062-6050-44.2.136

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hunter E, Ostrowski J, Donahue M, Crowley C, Herzog V. Effect of salted ice bags on surface and intramuscular tissue cooling and rewarming rates. J Sport Rehabil. 2016;25(1):7076. PubMed ID: 25611339 doi:10.1123/jsr.2014-0289

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Chesterton L, Foster N, Ross L, Dip G. Skin temperature response to cryotherapy. Arch Phys Med Rehabil. 2002;83(4):543549. PubMed ID: 11932859 doi:10.1053/apmr.2002.30926

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kennet J, Hardaker N, Hobbs S, Selfe J. Cooling efficiency of 4 common cryotherapeutic agents. J Athl Train. 2007;42(3):343348. PubMed ID: 18059988

  • 19.

    Hawkins J, Shurtz J, Spears C. Traditional cryotherapy treatments are more effective than game ready on medium setting at decreasing sinus tarsi tissue temperatures in uninjured subjects. J Athl Enhancement. 2012;1(2):15.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Burke J, Herman A, Long B, Miller K. Ankle skin temperature changes following ice bag application with compression at varying levels of elevation. Athl Train Sports Health Care. 2017;9(4):163168. doi:10.3928/19425864-20170313-02

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Danielson R, Jaeger J, Rippetoe J. Differences in skin surface temperature and pressure during the application of various cold and compression devices. J Athl Train. 1997;32(S):76.

    • Search Google Scholar
    • Export Citation
  • 22.

    Otte J, Merrick M, Ingersoll C, Cordova M. Subcutaneous adipose tissue thickness alters cooling time during cryotherapy. Arch Phys Med Rehabil. 2002;83(11):15011505. PubMed ID: 12422316 doi:10.1053/apmr.2002.34833

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Petrofsky J, Laymon M. Heat transfer to deep tissue: the effect of body fat and heating modality. J Med Eng Technol. 2009;33(5):337348. PubMed ID: 19440919 doi:10.1080/03091900802069547

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Enwemeka C, Allen C, Avila P, Bina J, Konrade J, Munns S. Soft tissue thermodynamics before, during, and after cold pack therapy. Med Sci Sports Exerc. 2002;34(1):4550. PubMed ID: 11782646 doi:10.1097/00005768-200201000-00008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Tomchuk D, Rubley M, Holcomb W, Guadagnoli M, Tarno J. The magnitude of tissue cooling during cryotherapy with varied typed of compression. J Athl Train. 2010;45(3):230237. PubMed ID: 20446835 doi:10.4085/1062-6050-45.3.230

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Mora S, Zalavras C, Wang L, Thordarson D. The role of pulsatile cold compression in edema resoluation following ankle fractures: a randomized clinical trial. Foot Ankle Int. 2002;23(11):9991002. PubMed ID: 12449403 doi:10.1177/107110070202301105

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Holwerda S, Trowbridge C, Womochel K, Keller D. Effects of cold modality application with static and intermittent pneumatic compression on tissue temperature and systemic cardiovascular responses. Sports Health. 2013;5(1):2733. PubMed ID: 24381698 doi:10.1177/1941738112450863

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Faul F, Erdfelder E, Lang A.-G., Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175191.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Jutte L, Knight K, Long B. Reliability and validity of electrothermometers and associated thermocouples. J Sport Rehabil. 2008;17(1):5059. PubMed ID: 18270386 doi:10.1123/jsr.17.1.50

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Long B, Jutte L, Knight K. Response of thermocouples interfaced to electrothermometers when immersed in 5 water bath temperatures. J Athl Train. 2010;45(4):338343. PubMed ID: 20617907 doi:10.4085/1062-6050-45.4.338

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Jutte L, Long B, Knight K. Temperature measurement reliability and validity with thermocouple extension leads or changing lead temperature. J Athl Train. 2010;45(6):642644. PubMed ID: 21062188 doi:10.4085/1062-6050-45.6.642

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Ostrowski J, Purchio A, Bartoletti M, Leisinger J, Tucker M, Hurst S. Examination of intramuscular and skin temperature decreases produced by the PowerPlay intermittent compression cryotherapy. J Sport Rehabil. 2017;19:114. PubMed ID: 28422604 doi:10.1123/jsr.2016-0244

    • Search Google Scholar
    • Export Citation
  • 33.

    Merrick M, Jutte L, Smith M. Cold modalities with different thermodynamic properties produce different surface and intramuscular temperatures. J Athl Train. 2003;38(1):2833. PubMed ID: 12937469

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Wilkerson G. Management of the acute inflammatory response following joint trauma. Sports Med Update. 1992;7(3):1215, 28.

  • 35.

    Wilkerson G. Treatment of ankle sprains with external compression and early mobilization. Phys Sportsmed. 1985;13(6):8390. PubMed ID: 27410213 doi:10.1080/00913847.1985.11708814

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Merrick M, Knight K, Ingersoll C, Potteiger J. The effects of ice and compression wraps on intramuscular temperatures at various depths. J Athl Train. 1993;28(3):236245. PubMed ID: 16558238

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Muller W, Horn M, Furhapter-Rieger A, et al. Body composition in sport: a comparison of a novel ultrasound imaging technique to measure subcutaneous fat tissue compared with skinfold measurement. Br J Sports Med. 2013;47:10281035. PubMed ID: 24055780 doi:10.1136/bjsports-2013-092232

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Selkow N, Day C, Liu Z, Hart J, Hertel J, Saliba S. Microvascular perfusion and intramuscular temperature of the calf during cooling. Med Sci Sports Exerc. 2012;44(5):850856. PubMed ID: 21988932 doi:10.1249/MSS.0b013e31823bced9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Mlynarczyk J. Skin Temperature Changes in the Ankle During and After Ice Pack Application of 10, 20, 30, 45, and 60 Minutes. [Masters Thesis]. Terre Haute, IN: Indiana State University; 1984.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2571 1038 31
Full Text Views 69 15 0
PDF Downloads 67 21 0