The Role of Lumbopelvic-Hip Complex Stability in Softball Throwing Mechanics

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Studies have found that a 20% reduction in energy generation from the lumbopelvic-hip complex during overhead throws leads to a 34% increase in load on the shoulder. Objective: The purpose of this study was to assess the effects of lumbopelvic-hip complex stability, via the single leg squat assessment, on throwing mechanics of softball athletes. Design: Prospective cohort study. Setting: Laboratory setting. Participants: A total of 50 softball athletes (164.0 [104.0] cm, 65.6 [11.3] kg, 16.3 [3.8] y, 8.61 [3.62] y of experience) performed 3 overhead throws and a single leg squat on each leg. Intervention: Four stability groups were derived: (1) stable on both legs (bilateral stability), (2) unstable on the throwing side leg (TS instability) and stable on the nonthrowing side leg, (3) unstable on the nonthrowing side leg (NTS instability) and stable on the throwing side leg, and (4) unstable on both legs (bilateral instability). All throws were analyzed across 4 throwing events: foot contact (FC), maximum external shoulder rotation (MER), ball release (BR), and maximum internal shoulder rotation (MIR). Main Outcome Measures: Mann–Whitney U tests revealed significant differences between the bilateral stability and the TS instability groups in trunk flexion at BR; the bilateral stability and the NTS instability groups in trunk flexion at BR, shoulder horizontal abduction at FC, shoulder rotation at FC, and pelvis flexion at MIR; the TS instability and the bilateral instability groups in trunk rotation at FC; and the NTS instability and the bilateral instability groups in trunk flexion at MER and shoulder rotation at FC. Conclusion: These findings demonstrate the different mechanisms in which energy can be lost through lumbopelvic-hip complex instability as evident in throwing mechanics. The findings from this study suggest that the current methods used for classification could act as a tool for coaches, physicians, and athletic trainers when assessing their athletes’ injury susceptibility.

Gilmer, Washington, and Oliver are with the School of Kinesiology, Auburn University, Auburn, AL. Dugas is with Andrews Sports Medicine and Orthopaedic Center, Birmingham, AL. Andrews is with Andrews Institute for Orthopaedics and Sports Medicine, Gulf Breeze, FL.

Oliver (gdo0001@auburn.edu) is corresponding author.
  • 1.

    Powell JW, Barber-Foss KD. Injury patterns in selected high school sports: a review of the 1995–1997 seasons. J Athl Train. 1999;34(3):277284. PubMed ID: 16558577

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Putnam CA. Sequential motions of body segments in striking and throwing skills: descriptions and explanations. J Biomech. 1993;26(suppl 1):125135. PubMed ID: 8505347 doi:10.1016/0021-9290(93)90084-R

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Erickson BJ, Sgori T, Chalmers PN, et al. The impact of fatigue on baseball pitching mechanics in adolescent male pitchers. Arthroscopy. 2016;32(5):762771. PubMed ID: 26952088 doi:10.1016/j.arthro.2015.11.051

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Popchak A, Burnett T, Weber N, Boninger M. Factors related to injury in youth and adolescent baseball pitching, with an eye toward prevention. Am J Phys Med Rehabil. 2015;94(5):395409. PubMed ID: 25251251 doi:10.1097/PHM.0000000000000184

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Tyler TF, Mullaney MJ, Mirabella MR, Nicholas SJ, McHugh MP. Risk factors for shoulder and elbow injuries in high school baseball pitchers: the role of preseason strength and range of motion. Am J Sports Med. 2014;42(8):19931999. PubMed ID: 24893778 doi:10.1177/0363546514535070

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Kibler WB, Press J, Sciascia A. The role of core stability in athletic function. Sports Med. 2006;36(3):189198. PubMed ID: 16526831 doi:10.2165/00007256-200636030-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hodges PW, Richardson CA. Feedforward contraction of transversus abdominis is not influenced by direction of arm movement. Exp Brain Res. 1997;114(2):362370. doi:10.1007/PL00005644

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    McMullen J, Uhl TL. A kinetic chain approach for shoulder rehabilitation. J Athl Train. 2000;35(3):329337. PubMed ID: 16558646

  • 9.

    Kibler WB, Chandler TJ, Shapiro R, Conuel M. Muscle activation in coupled scapulohumeral motions in the high performance tennis serve. Br J Sports Med. 2007;41(11):745749. PubMed ID: 17957010 doi:10.1136/bjsm.2007.037333

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Kibler WB, Sciascia A. The shoulder at risk: scapular dyskinesis and altered glenohumeral rotation. Oper Tech Sports Med. 2016;24(3):162169. doi:10.1053/j.otsm.2016.04.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Graci V, Van Dillen LR, Salsich GB. Gender differences in trunk, pelvis and lower limb kinematics during a single leg squat. Gait Posture. 2012;36(3):461466. PubMed ID: 22591790 doi:10.1016/j.gaitpost.2012.04.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Plummer H, Oliver GD. Quantitative analysis of kinematics and kinetics of catchers throwing to second base. J Sports Sci. 2013;31(10):11081116. PubMed ID: 23419054 doi:10.1080/02640414.2013.770907

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Keeley DW, Oliver GD, Dougherty CP. A biomechanical model correlating shoulder kinetics to pain in young baseball pitchers. J Hum Kinet. 2012;34:1520. PubMed ID: 23486209 doi:10.2478/v10078-012-0059-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Oliver GD, Keeley DW. Pelvis and torso kinematics and their relationship to shoulder kinematics in high-school baseball pitchers. J Strength Cond Res. 2010;24(12):32413246. PubMed ID: 20703168 doi:10.1519/JSC.0b013e3181cc22de

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Oliver GD, Keeley DW. Gluteal muscle group activation and its relationship with pelvis and torso kinematics in high-school baseball pitchers. J Strength Cond Res. 2010;24(11):30153022. PubMed ID: 20664365 doi:10.1519/JSC.0b013e3181c865ce

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Wu G, Siegler S, Allard P, et al. ISB recommendation on definitions of joint coordinate system of various joints for reporting of human joint motion-part I: ankle, hip, and spine. J Biomech. 2002;35(4):543548. PubMed ID: 11934426 doi:10.1016/S0021-9290(01)00222-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Wu G, van der Helm FCT, Veeger HEJ, et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. J Biomech. 2005;38(5):981992. PubMed ID: 15844264 doi:10.1016/j.jbiomech.2004.05.042

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Wicke J, Keeley DW, Oliver GD. Comparison of pitching kinematics between youth and adult baseball pitchers: a meta-analytic approach. Sports Biomech. 2013;12(4):315323. PubMed ID: 24466644 doi:10.1080/14763141.2013.838692

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Bolgla LA, Malone TR, Umberger BR, Uhl TL. Hip strength and hip and knee kinematics during stair descent in females with and without patellofemoral pain syndrome. J Orthop Sports Phys Ther. 2008;38(1):1218. PubMed ID: 18349475 doi:10.2519/jospt.2008.2462

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Claiborne TL, Armstrong CW, Gandhi V, Pincivero DM. Relationship between hip and knee strength and knee valgus during a single leg squat. J Appl Biomech. 2006;22:4150. PubMed ID: 16760566 doi:10.1123/jab.22.1.41

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Crossley KM, Zhang WJ, Schache AG, Bryant A, Cowan SM. Performance on the single-leg squat task indicates hip abductor muscle function. Am J Sports Med. 2011;39(4):866873. PubMed ID: 21335344 doi:10.1177/0363546510395456

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Yamazaki J, Muneta T, Ju YJ, Sekiya I. Differences in kinematics of single leg squatting between anterior cruciate ligament-injured patients and healthy controls. Knee Surg Sports Traumatol Arthrosc. 2019;18:5663. doi:10.1007/s00167-009-0892-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Zeller BL, McCrory JL, Ben Kibler W, Uhl TL. Differences in kinematics and electromyographic activity between men and women during the single-legged squat. Am J Sports Med. 2003;31(3):449456. PubMed ID: 12750142 doi:10.1177/03635465030310032101

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Nakagawa TH, Moriya ET, Maciel CD, Serrao FV. Trunk, pelvis, hip, and knee kinematics, hip strength, and gluteal muscle activation during a single-leg squat in males and females with and without patellofemoral pain syndrome. J Orthop Sports Phys Ther. 2012;42(6):491501. PubMed ID: 22402604 doi:10.2519/jospt.2012.3987

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    DiMattia MA, Livengood AL, Uhl TL, Mattacola CG, Malone TR. What are the validity of the single-leg-squat test and its relationship to hip-abducation. J Sport Rehabil. 2005;14:108123. doi:10.1123/jsr.14.2.108

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Tanaka H, Hayashi T, Inui H, Ninomiya H, Muto T, Nobuhara K. Influence of combinations of shoulder, elbow and trunk orientation on elbow joint loads in youth baseball pitchers. Orthop J Sports Med. 2016;4(7 suppl 4):2325967116S00204. doi:10.1177/2325967116S00204

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Kageyama M, Sugiyama T, Kanehisa H, Maeda A. Difference between adolescent and collegiate baseball pitchers in kinematics and kinetics of the lower limbs and trunk during pitching motion. J Sports Sci Med. 2015;14(2):246255. PubMed ID: 25983571

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Kazuyuki I, Murata M, Hiraro Y. Shoulder and elbow kinematics in throwing of young baseball players. Sports Biomech. 2006;5(2):183196. PubMed ID: 16939152 doi:10.1080/14763140608522873

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Veeger HE. The position of the rotation center of the glenohumeral joint. J Biomech. 2000;33(12):17111715. PubMed ID: 11006398 doi:10.1016/S0021-9290(00)00141-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Saeterbakken AH, van den Tillaar R, Seiler S. Effect of core stability training on throwing velocity in female handball players. J Strength Cond Res. 2011;25(3):712718. PubMed ID: 20581697 doi:10.1519/JSC.0b013e3181cc227e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Chamberlin JM, Fry MD, Iwasaki S. High school athletes’ perceptions of the motivational climate in their off-season training programs. J Strength Cond Res. 2017;31(3):736742. PubMed ID: 27379952 doi:10.1519/JSC.0000000000001533

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 533 533 91
Full Text Views 39 39 0
PDF Downloads 16 16 0