Comparison of Shoulder Protraction Strength and Electromyography Activity of Serratus Anterior and Pectoralis Major in Subjects With or Without a Winged Scapula

Click name to view affiliation

Jun-Seok Kim
Search for other papers by Jun-Seok Kim in
Current site
Google Scholar
PubMed
Close
,
Moon-Hwan Kim
Search for other papers by Moon-Hwan Kim in
Current site
Google Scholar
PubMed
Close
,
Duk-Hyun Ahn
Search for other papers by Duk-Hyun Ahn in
Current site
Google Scholar
PubMed
Close
, and
Jae-Seop Oh
Search for other papers by Jae-Seop Oh in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: A winged scapula (WS) is associated with faulty posture caused by weakness of the serratus anterior (SA), which mainly acts as a scapular stabilizer muscle. It is important to accurately assess and train the SA muscle with a focus on scapula stabilizers during musculoskeletal rehabilitation of individuals with a WS. Objective: The authors examined muscle activity in the SA and pectoralis major (PM), upper trapezius (UT), and anterior deltoid (AD) as well as shoulder protraction strength during isometric shoulder protraction in individuals with and without a WS. Design: Cross-sectional study. Setting: A clinical biomechanics laboratory. Participants: In total, 27 males with no shoulder, neck, or upper-extremity pain participated. Main Outcome Measures: Isometric shoulder protraction strength was collected and surface electromyography used to measure the activity of the SA, PM, UT, and AD muscles and selective SA activity ratio to other shoulder muscles. Results: Electromyography activity of the SA muscle and shoulder protraction strength were significantly lower in individuals with a WS compared with the non-WS group (P < .05). In contrast, PM muscle activity and the PM-to-SA, UT-to-SA, and AD-to-SA ratios were significantly greater in individuals with a WS than in individuals without winging (P < .05). Conclusions: Isometric shoulder protraction for measuring SA strength in individuals with a WS should focus on isolated muscle activity of the SA, and SA strengthening exercises are important for individuals with a WS.

J-S. Kim is with the Department of Rehabilitation Science, Graduate School, INJE University, Gimhae, South Korea. M-H. Kim is with the Department of Rehabilitation, Wonju Severance Christian Hospital, Wonju, South Korea. Ahn and Oh are with the Department of Physical Therapy, INJE University, Gimhae, South Korea. Oh is also with the Department of Physical Therapy, College of Biomedical Science and Engineering, INJE University, South Korea.

Oh (ysrehab@inje.ac.kr) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Rempel DM, Wang PC, Janowitz I, Harrison RJ, Yu F, Ritz BR. A randomized controlled trial evaluating the effects of new task chairs on shoulder and neck pain among sewing machine operators: the Los Angeles garment study. Spine. 2007;32(9):931938. PubMed ID: 17450065 doi:10.1097/01.brs.0000261028.88020.fc

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Cools AM, Witvrouw EE, Declercq GA, Vanderstraeten GG, Cambier DC. Evaluation of isokinetic force production and associated muscle activity in the scapular rotators during a protraction-retraction movement in overhead athletes with impingement symptoms. Br J Sports Med. 2004;38(1):6468. PubMed ID: 14751949 doi:10.1136/bjsm.2003.004952

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hallstrom E, Karrholm J. Shoulder kinematics in 25 patients with impingement and 12 controls. Clin Orthop Relat Res. 2006;448:2227. PubMed ID: 16826091 doi:10.1097/01.blo.0000224019.65540.d5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Madeleine P, Mathiassen SE, Arendt-Nielsen L. Changes in the degree of motor variability associated with experimental and chronic neck–shoulder pain during a standardised repetitive arm movement. Exp Brain Res. 2008;185(4):689698. PubMed ID: 18030457 doi:10.1007/s00221-007-1199-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Martin RM, Fish DE. Scapular winging: anatomical review, diagnosis, and treatments. Curr Rev Musculoskelet Med. 2008;1(1):111. PubMed ID: 19468892 doi:10.1007/s12178-007-9000-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Warner JJ, Navarro RA. Serratus anterior dysfunction. Recognition and treatment. Clin Orthop Relat Res. 1998;349;139148. PubMed ID: 9584376 doi:10.1097/00003086-199804000-00017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Ludewig PM, Cook TM. Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther. 2000;80(3):276291. PubMed ID: 10696154

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Lukasiewicz AC, McClure P, Michener L, Pratt N, Sennett B. Comparison of 3-dimensional scapular position and orientation between subjects with and without shoulder impingement. J Orthop Sports Phys Ther. 1999;29(10):574583. PubMed ID: 10560066 doi:10.2519/jospt.1999.29.10.574

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Ludewig PM, Cook TM, Nawoczenski DA. Three-dimensional scapular orientation and muscle activity at selected positions of humeral elevation. J Orthop Sports Phys Ther. 1996;24(2):5765. PubMed ID: 8832468 doi:10.2519/jospt.1996.24.2.57

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    McClure PW, Michener LA, Sennett BJ, Karduna AR. Direct 3-dimensional measurement of scapular kinematics during dynamic movements in vivo. J Shoulder Elbow Surg. 2001;10(3):269277. PubMed ID: 11408911 doi:10.1067/mse.2001.112954

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Lear LJ, Gross MT. An electromyographical analysis of the scapular stabilizing synergists during a push-up progression. J Orthop Sports Phys Ther. 1998;28(3):146157. PubMed ID: 9742471 doi:10.2519/jospt.1998.28.3.146

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Smith R Jr, Nyquist-Battie C, Clark M, Rains J. Anatomical characteristics of the upper serratus anterior: cadaver dissection. J Orthop Sports PhysTher. 2003;33(8):449454. PubMed ID: 12968858 doi:10.2519/jospt.2003.33.8.449

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Glousman RE. Instability versus impingement syndrome in the throwing athlete. Orthop Clin North Am. 1993;24(1):8999. PubMed ID: 8421620

  • 14.

    Schmitt L, Snyder-Mackler L. Role of scapular stabilizers in etiology and treatment of impingement syndrome. J Orthop Sports Phys Ther. 1999;29(1):3138. PubMed ID: 10100119 doi:10.2519/jospt.1999.29.1.31

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Scovazzo ML, Browne A, Pink M, Jobe FW, Kerrigan J. The painful shoulder during freestyle swimming. An electromyographic cinematographic analysis of twelve muscles. Am J Sports Med. 1991;19(6):577582. PubMed ID: 1781493 doi:10.1177/036354659101900604

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hardwick DH, Beebe JA, McDonnell MK, Lang CE. A comparison of serratus anterior muscle activation during a wall slide exercise and other traditional exercises. J Orthop Sports Phys Ther. 2006;36(12):903910. PubMed ID: 17193867 doi:10.2519/jospt.2006.2306

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Ludewig PM, Hoff MS, Osowski EE, Meschke SA, Rundquist PJ. Relative balance of serratus anterior and upper trapezius muscle activity during push-up exercises. Am J Sports Med. 2004;32(2):484493. PubMed ID: 14977678 doi:10.1177/0363546503258911

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Jung SH, Hwang UJ, Kim JH, Gwak GT, Kwon OY. Effects of horizontal shoulder abduction and adduction on the activity and strength of the scapular protractors. J Electromyogr Kinesiol. 2017;37:155159. PubMed ID: 29102878 doi:10.1016/j.jelekin.2017.10.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Voight ML, Thomson BC. The role of the scapula in the rehabilitation of shoulder injuries. J Athl Train. 2000;35(3):364372. PubMed ID: 16558649

  • 20.

    Solem-Bertoft E, Thuomas KA, Westerberg CE. The influence of scapular retraction and protraction on the width of the subacromial space: an MRI study. Clin Orthop Relat Res. 1993;296:99103. PubMed ID: 8222458

    • Search Google Scholar
    • Export Citation
  • 21.

    Labriola JE, Lee TQ, Debski RE, McMahon PJ. Stability and instability of the glenohumeral joint: the role of shoulder muscles. J Shoulder Elbow Surg. 2005;14(1)(suppl S):32S38S. PubMed ID: 15726085 doi:10.1016/j.jse.2004.09.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Struyf F, Cagnie B, Cools A, et al. Scapulothoracic muscle activity and recruitment timing in patients with shoulder impingement symptoms and glenohumeral instability. J Electromyogr Kinesiol. 2014;24(2):277284. PubMed ID: 24389333 doi:10.1016/j.jelekin.2013.12.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Hall S. Basic Biomechanics. 5th ed. New York, USA: McGraw-Hill; 2006.

  • 24.

    Kendall F, McCreary E, Provance P, Rodgers M, Romani W. Muscles: Testing and Function, With Posture and Pain. 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2005.

    • Search Google Scholar
    • Export Citation
  • 25.

    Castelein B, Cagnie B, Parlevliet T, Cools A. Serratus anterior or pectoralis minor: which muscle has the upper hand during protraction exercises? Man Ther. 2016;22:158164. PubMed ID: 26749459 doi:10.1016/j.math.2015.12.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Park KM, Cynn HS, Kwon OY, Yi CH, Yoon TL, Lee JH. Comparison of pectoralis major and serratus anterior muscle activities during different push-up plus exercises in subjects with and without scapular winging. J Strength Cond Res. 2014;28(9):25462551. PubMed ID: 24618724 doi:10.1519/JSC.0000000000000443

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Wang SS, Normile SO, Lawshe BT. Reliability and smallest detectable change determination for serratus anterior muscle strength and endurance tests. Physiother Theory Pract. 2006;22(1):3342. PubMed ID: 16573244 doi:10.1080/09593980500422461

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Oh JS, Kang MH, Dvir Z. Reproducibility of isometric shoulder protraction and retraction strength measurements in normal subjects and individuals with winged scapula. J Shoulder Elbow Surg. 2016;25(11):18161823. PubMed ID: 27262411 doi:10.1016/j.jse.2016.03.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Weon JH, Kwon OY, Cynn HS, Lee WH, Kim TH, Yi CH. Real-time visual feedback can be used to activate scapular upward rotators in people with scapular winging: an experimental study. J Physiother. 2011;57(2):101107. PubMed ID: 21684491 doi:10.1016/S1836-9553(11)70020-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Criswell E. Cram’s Introduction to Surface Electromyography. 2nd ed. Massachusetts, MA: Jones and Bartlett Publishers; 2010.

  • 31.

    Ekstrom RA, Bifulco KM, Lopau CJ, Andersen CF, Gough JR. Comparing the function of the upper and lower parts of the serratus anterior muscle using surface electromyography. J Orthop Sports Phys Ther. 2004;34(5):235243. PubMed ID: 15189015 doi:10.2519/jospt.2004.34.5.235

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Ekstrom RA, Soderberg GL, Donatelli RA. Normalization procedures using maximum voluntary isometric contractions for the serratus anterior and trapezius muscles during surface EMG analysis. J Electromyogr Kinesiol. 2005;15(4):418428. PubMed ID: 15811612 doi:10.1016/j.jelekin.2004.09.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Michener LA, Boardman ND, Pidcoe PE, Frith AM. Scapular muscle tests in subjects with shoulder pain and functional loss: reliability and construct validity. Phys Ther. 2005;85(11):11281138. PubMed ID: 16253043

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Chance-Larsen K, Littlewood C, Garth A. Prone hip extension with lower abdominal hollowing improves the relative timing of gluteus maximus activation in relation to biceps femoris. Man Ther. 2010;15(1):6165. PubMed ID: 19679506 doi:10.1016/j.math.2009.07.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Page P, Frank CC, Lardner R. Assessment and Treatment of Muscle Imbalance: The Janda Approach. 1st ed. Champaign, IL: Human Kinetics; 2010.

  • 36.

    Farina D, Leclerc F, Arendt-Nielsen L, Buttelli O, Madeleine P. The change in spatial distribution of upper trapezius muscle activity is correlated to contraction duration. J Electromyogr Kinesiol. 2008;18(1):1625. PubMed ID: 17049273 doi:10.1016/j.jelekin.2006.08.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Madeleine P, Leclerc F, Arendt-Nielsen L, Ravier P, Farina D. Experimental muscle pain changes the spatial distribution of upper trapezius muscle activity during sustained contraction. Clin Neurophysiol. 2006;117(11):24362445. PubMed ID: 16996301 doi:10.1016/j.clinph.2006.06.753

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Jonkers I, Stewart C, Spaepen A. The complementary role of the plantar flexors, hamstrings and gluteus maximus in the control of stance limb stability during gait. Gait Posture. 2003;17(3):264272. PubMed ID: 12770640 doi:10.1016/S0966-6362(02)00102-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Oh JS, Cynn HS, Won JH, Kwon OY, Yi CH. Effects of performing an abdominal drawing-in maneuver during prone hip extension exercises on hip and back extensor muscle activity and amount of anterior pelvic tilt. J Orthop Sports Phys Ther. 2007;37(6):320324. PubMed ID: 17612358 doi:10.2519/jospt.2007.2435

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Lunden JB, Braman JP, LaPrade RF, Ludewig PM. Shoulder kinematics during the wall push-up plus exercise. J Shoulder Elbow Surg. 2010;19(2):216223. PubMed ID: 19733487 doi:10.1016/j.jse.2009.06.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Soderberg GL, Knutson LM. A guide for use and interpretation of kinesiologic electromyographic data. Phys Ther. 2000;80(5):485498. PubMed ID: 10792859

  • 42.

    Jobe FW, Moynes DR, Tibone JE, Perry J. An EMG analysis of the shoulder in pitching. A second report. Am J Sports Med. 1984;12(3):218220. PubMed ID: 6742305 doi:10.1177/036354658401200310

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Schwartz M. EMG Methods for Evaluating Muscle and Nerve Function. London, UK: In Tech, 2011.

All Time Past Year Past 30 Days
Abstract Views 3479 598 78
Full Text Views 61 11 0
PDF Downloads 57 7 0