The Influence of Corrective Exercises on Functional Movement Screen and Physical Fitness Performance in Army ROTC Cadets

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: The functional movement screen (FMS) is a tool designed to identify limitations between sections of the body during fundamental movements. However, there is limited evidence on the effectiveness of corrective exercises to improve FMS scores. Objective: To examine the effects of individualized corrective exercises on improving FMS scores in Reserve Officers’ Training Corps cadets and to correlate these changes with physical fitness performance as established with the standard Army Physical Fitness Test (APFT). Design: Cluster randomized, cohort study. Setting: Controlled laboratory setting (FMS) and a field-based setting (APFT). Participants: Forty-four healthy, physically active cadets met all inclusion and exclusion criteria. Intervention: Participants were randomly assigned to the experimental (n = 24) or control (n = 20) group by cluster. Personalized intervention programs were developed through the FMS Pro360 system, a subscription-based software that generates corrective exercises based on individual FMS test scores. The experimental group performed the individualized programs 3 times per week for 4 weeks prior to morning physical training regime. The control group continued to participate in the standard warm-up drills as part of morning physical training. Main Outcome Measures: The dependent variables included the individual and composite FMS and APFT scores. Scores were reported and analyzed in several ways to determine the efficacy of corrective exercises. Results: Group FMS and APFT scores were similar at pretest. The experimental group had a significantly greater improvement in FMS composite score at 4 weeks post (U = 87; z = −3.83; P = .001; effect size = 1.33; 95% confidence interval, 0.69–1.98). No significant changes in APFT scores were found (U = 237.5, z = −0.33, P = .74). A nonsignificant weak correlation between the FMS and APFT scores (r = .25, P = .10) was found. Conclusion: Individualized corrective exercises improved FMS scores, but did not change physical fitness performance. FMS composite scores and APFT performance are not related.

Basar is with Illinois State University, Normal, IL. Stanek and Dodd are with the School of Kinesiology and Recreation, Illinois State University, Normal, IL. Begalle is with the Division of Health and Human Services, Athletic Training Department, Daemen College, Amherst, NY.

Basar (Marissa.basar@otterbein.edu) is corresponding author.
  • 1.

    Cook G, Burton L, Hoogenboom B. Pre-participation screening: the use of fundamental movements as an assessment of function—part 1. N Am J Sports Phys Ther. 2006;1(2):6272. PubMed ID: 21522216

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Lockie R, Schultz A, Callaghan S, Jordan C, Luczo T, Jeffriess M. A preliminary investigation into the relationships between functional movement screen scores and athletic physical performance in female team sport athletes. Bio Sport. 2015;32(1):4151. PubMed ID: 25729149 doi:10.5604/20831862.1127281

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Cook G Burton L, Hoogenboom BJ, Voight M. Functional movement screening: the use of fundamental movement as an assessment of function—part 1. Int J Sports Phys Ther. 2014;9(3):396409. PubMed ID: 24944860

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Cook G, Burton L, Hoogenboom BJ, Voight M. Functional movement screening: the use of fundamental movement as an assessment of function—part 2. Int J Sports Phys Ther. 2014;9(4):549563. PubMed ID: 25133083

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Cook G, Burton L, Hoogenboom B. Pre-participation screening: the use of fundamental movements as an assessment of function– part 2. N Am J Sports Phys Ther. 2006;1(3):132139. PubMed ID: 21522225

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Cook G. Movement: Functional Movement Systems: Screening-Assessment-Corrective strategies. In: Burton L, Kiesel K, Rose G, Bryant MF, eds. Santa Cruz, CA: On Target Publications; 2010:408.

    • Search Google Scholar
    • Export Citation
  • 7.

    Knapik JJ, East WB. History of United States Army physical fitness and physical readiness training. US Army Med Dep J. 2014:519. PubMed ID: 24706237

  • 8.

    Lisman P, O’Connor FG, Deuster PA, Knapik JJ. Functional movement screen and aerobic fitness predict injuries in military training. Med Sci Sports Exerc. 2013;45(4):636643. PubMed ID: 23190584 doi:10.1249/MSS.0b013e31827a1c4c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Simpson K, Redmond JE, Cohen BS, et al. Quantification of physical activity performed during US Army Basic Combat Training. US Army Med Dep J. 2013:5565. PubMed ID: 24146243

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Thomas DQ, Lumpp SA, Schreiber JA, Keith JA. Physical fitness profile of Army ROTC cadets. J Strength Cond Res. 2004;18(4):904907. PubMed ID: 15574107 doi:10.1519/14523.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kiesel K, Plisky PJ, Voight ML. Can serious injury in professional football be predicted by a preseason functional movement screen? N Am J Sports Phys Ther. 2007;2(3):147158. PubMed ID: 21522210

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Schneiders AG, Davidsson A, Hörman E, Sullivan SJ. Functional movement screen normative values in a young, active population. Int J Sports Phys Ther. 2011;6(2):7582. PubMed ID: 21713227

    • Search Google Scholar
    • Export Citation
  • 13.

    Bock C, Orr RM. Use of the functional movement screen in a tactical population: a review. 2015;23:3342.

  • 14.

    Kiesel K, Plisky P, Butler R. Functional movement test scores improve following a standardized off-season intervention program in professional football players. Scand J Med Sci Sports. 2001;21(2):287292. PubMed ID: 20030782 doi:10.1111/j.1600-0838.2009.01038.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Minthorn LM, Fayson SD, Stobierski LM, Welch CE, Anderson BE. The functional movement screen’s ability to detect changes in movement patterns after a training intervention. J Sport Rehabil. 2015;24(3):322326. PubMed ID: 25008102 doi:10.1123/jsr.2013-0146

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Loudon JK, Parkerson-Mitchell AJ, Hildebrand LD, Teague C. Functional movement screen scores in a group of running athletes. J Strength Cond Res. 2014;28(4):909913. PubMed ID: 24662154 doi:10.1097/JSC.0000000000000233

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Argesta C, Slobodinsky M, Tucker C. Functional movement screen—normative values in healthy distance runners. Int J Sports Med. 2014;35(14):12031207. doi:10.1055/s-0034-1382055

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Gulgin H, Hoodenboom B. The functional movement screening (FMS): an inter-rater reliability study between raters of varied experience. Int J Sports Phys Ther. 2014;9(1):1420. PubMed ID: 24567851

    • Search Google Scholar
    • Export Citation
  • 19.

    Onate JA, Dewey T, Kollock RO, et al. Real-time intersession and interrater reliability of the functional movement screen. J Strength Cond Res. 2012;26(2):408415. PubMed ID: 22266547 doi:10.1519/JSC.0b013e318220e6fa

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Smith CA, Chimera NJ, Wright NJ, Warren M. Interrater and intrarater reliability of the functional movement screen. J Strength Cond Res. 2013;27(4):982987. PubMed ID: 22692121 doi:10.1519/JSC.0b013e3182606df2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Teyhen DS, Shaffer SW, Lorenson CL, et al. The functional movement screen: a reliability study. J Orthop Sports Phys Ther. 2012;42(6):530540. PubMed ID: 22585621 doi:10.2519/jospt.2012.3838

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Shultz R, Anderson SC, Matheson GO, Marcello B, Besier T. Test-retest and interrater reliability of the functional movement screen. J Athl Train. 2013;48(3):331336. PubMed ID: 23675792 doi:10.4085/1062-6050-48.2.11

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Stobierski LM, Fayson SD, Minthorn LM, Valovich McLeod TC, Welch CE. Reliability of clinician scoring of the functional movement screen to assess movement patterns. J Sport Rehabil. 2015;24(2):219222. PubMed ID: 25054658 doi:10.1123/jsr.2013-0139

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Sprague PA, Mokha GM, Gatens DR. Changes in functional movement screen scores over a season in collegiate soccer and volleyball athletes. J Strength Cond Res. 2014;28(11):31553163. PubMed ID: 24796980 doi:10.1519/JSC.0000000000000506

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Butler RJ, Contreras M, Burton LC, Plisky PJ, Goode A, Kiesel K. Modifiable risk factors predict injuries in firefighters during training academies. Work. 2013;46(1):1117. PubMed ID: 23324700

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hotta T, Nishiguchi S, Fukutani N, et al. Functional movement screen for predicting running injuries in 18- to 24-year-old competitive male runners. J Strength Cond Res. 2015;29(10):28082815. PubMed ID: 25853918 doi:10.1519/JSC.0000000000000962

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Frost DM, Beach TA, Callaghan JP, McGill SM. Using the functional movement screen to evaluate the effectiveness of training. J Strength Cond Res. 2012;26(6):16201630. PubMed ID: 21921825 doi:10.1519/JSC.0b013e318234ec59

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Frost DM, Beach TA, Callaghan JP, McGill SM. FMS scores change with performers’ knowledge of the grading criteria—are general whole-body movement screens capturing “dysfunction”? J Strength Cond Res. 2015;29(11):30373044. PubMed ID: 26502271 doi:10.1097/JSC.0000000000000211

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Bodden JG, Needham RA, Chockalingam N. The effect of an intervention program on functional movement screen test scores in mixed martial arts athletes. J Strength Cond Res. 2015;29(1):219225. PubMed ID: 23860293 doi:10.1519/JSC.0b013e3182a480bf

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Stanek JM, Dodd DJ, Kelly AR, Wolfe AM, Swenson RA. Active duty firefighters can improve functional movement screen (FMS) scores following an 8-week individualized client workout program. Work. 2017;56(2):213220. PubMed ID: 28234262 doi:10.3233/WOR-172493

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Scott SA, Simon JE, Van Der Pol B, Docherty CL. Risk factors for sustaining a lower extremity injury in an army reserve officer training corps cadet population. Mil Med. 2015;180(8):910916. PubMed ID: 26226535 doi:10.7205/MILMED-D-14-00618

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Government US. Wear and Appearance of Army Uniforms and Insignia. Washington, DC: Headquarters Department of the Army; 2015.

  • 33.

    Okada T, Huxel KC, Nesser TW. Relationship between core stability, functional movement, and performance. J Strength Cond Res. 2011;25(1):252261. PubMed ID: 20179652 doi:10.1519/JSC.0b013e3181b22b3e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Government US. Field Manual (FM) 7-22 Army Physical Readiness Training. Washington, DC: U.S. Government Printing Office (GPO); 2012:434.

    • Search Google Scholar
    • Export Citation
  • 35.

    Goss DL, Christopher GE, Faulk RT, Moore J. Functional training program bridges rehabilitation and return to duty. J Spec Oper Med. 2009;9(2):2948. PubMed ID: 19813517

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Cowen VS. Functional fitness improvements after a worksite-based yoga initiative. J Bodyw Mov Ther. 2010;14(1):5054. PubMed ID: 20006289 doi:10.1016/j.jbmt.2009.02.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Girard J, Quigley M, Helfst F. Does the functional movement screen correlate with athletic performance? A systematic review. Phys Ther Rev. 2016;21(2):8390. doi:10.1080/10833196.2016.1227568

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Cook G. Movement. Aptos, CA: On Target Publications; 2010.

  • 39.

    Abraham A, Sannasi R, Nair R. Normative values for the functional movement screen in adolescent school aged children. Int J Sports Phys Ther. 2015;10(1):2936. PubMed ID: 25709860

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Bardenett SM, Micca JJ, DeNoyelles JT, Miller SD, Jenk DT, Brooks GS. Functional movement screen normative values and validity in high school athletes: can the FMS be used as a predictor of injury? Int J Sport Phys Ther. 2015;10(3):303308. PubMed ID: 26075145

    • Search Google Scholar
    • Export Citation
  • 41.

    Kiesel KB, Butler RJ, Plisky PJ. Prediction of injury by limited and asymmetrical fundamental movement patterns in American football players. J Sport Rehabil. 2014;23(2):8894. PubMed ID: 24225032 doi:10.1123/JSR.2012-0130

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 544 544 33
Full Text Views 60 60 1
PDF Downloads 28 28 0