Effect of Sex and Level of Activity on Lower-Extremity Strength, Functional Performance, and Limb Symmetry

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Strength, functional performance, and limb symmetry are common objective clinical assessments used by clinicians to guide safe return to physical activity following injury. Population-specific unilateral limb outcomes or estimates of limb symmetry of these assessments should be established. Objective: To compare lower-extremity strength, functional performance, and limb symmetry in healthy participants based on sex and level of activity. Design: Descriptive laboratory study. Setting: Laboratory. Participants: A total of 117 healthy participants (72 males and 45 females; mass = 73.67 [13.60] kg, height = 1.76 [0.12] m, and age = 21.44 [2.92] y) without history of injury within 6 months were included. Interventions: Participants completed isokinetic concentric and isometric knee extension and flexion strength tasks at 90°/s, 180°/s, and 90°, respectively, and 4 hop tasks (single, cross-over, triple, and 6-m timed) during 1 session. Groups were separated by sex (male and female) and activity level (athlete and nonathlete). Participants rostered on National Collegiate Athletic Association (NCAA) Division I (DI) teams were considered as athletes, and non-NCAA DI healthy, uninjured participants were considered as nonathletes. Main Outcome Measures: Limb symmetry index (LSI), maximal voluntary isometric contraction (N·m/kg), peak torque (N·m/kg), average power (N·m/s), distance (m), and time hopped (s) were assessed. LSI was calculated by dividing the lower limb outcome by the higher limb outcome of the nondominant or dominant limb. Group differences were assessed through Mann–Whitney U tests and Cohen’s d effect sizes for all comparisons. Results: LSI differences did not exist between groups. Mean LSIs for all participants ranged between 83.52% (12.54%) and 96.16% (3.82%). On average, males were stronger (range: d = 0.63–1.54), hopped farther (range: d = 1.52–1.63), and hopped faster (range: d = 1.67–1.68) than females. On average, some strength differences existed between athletes and nonathletes, but athletes hopped farther (range: d = 0.71–0.82) and faster (range: d = 0.87–0.88) than nonathletes. Conclusions: Unilateral limb strength and functional performance outcomes differ between sex and activity level, but not limb symmetry. These differences may be important for a clinician’s understanding of normative values of common return-to-play assessment tasks.

Lisee is with the Department of Kinesiology, Michigan State University, East Lansing, MI, USA. Slater, Hertel, and Hart are with the Department of Kinesiology, University of Virginia, Charlottesville, VA, USA.

Lisee (liseecar@msu.edu) is corresponding author.
  • 1.

    Sanders TL, Kremers HM, Bryan AJ, et al. Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study. Am J Sports Med. 2016;44(6):1502–1507. PubMed ID: 26920430 doi:10.1177/0363546516629944

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Beynnon BD, Vacek PM, Newell MK, et al. The effects of level of competition, sport, and sex on the incidence of first-time noncontact anterior cruciate ligament injury. Am J Sports Med. 2014;42(8):1806–1812. PubMed ID: 25016012 doi:10.1177/0363546514540862

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hootman JM, Dick R, Agel J. Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. J Athl Train. 2007;42(2):311–319. PubMed ID: 17710181

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Xergia SA, Pappas E, Zampeli F, Georgiou S, Georgoulis AD. Asymmetries in functional hop tests, lower extremity kinematics, and isokinetic strength persist 6 to 9 months following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2013;43(3):154–162. PubMed ID: 23322072 doi:10.2519/jospt.2013.3967

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Ardern CL, Taylor NF, Feller JA, Webster KE. Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: an updated systematic review and meta-analysis including aspects of physical functioning and contextual factors. Br J Sports Med. 2014;48(21):1543–1552. PubMed ID: 25157180 doi:10.1136/bjsports-2013-093398

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Kaeding CC, Pedroza AD, Reinke EK, Huston LJ, MOON Consortium, Spindler KP. Risk factors and predictors of subsequent ACL injury in either knee after ACL reconstruction prospective analysis of 2488 primary ACL reconstructions from the MOON cohort. Am J Sports Med. 2015;43(7):1583–1590. PubMed ID: 25899429 doi:10.1177/0363546515578836

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med. 2016;44(7):1861–1876. PubMed ID: 26772611 doi:10.1177/0363546515621554

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Paterno MV. Incidence and predictors of second anterior cruciate ligament injury after primary reconstruction and return to sport. J Athl Train. 2015;50(10):1097–1099. PubMed ID: 26509777 doi:10.4085/1062-6050-50.10.07

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Barber-Westin SD, Noyes FR. Objective criteria for return to athletics after anterior cruciate ligament reconstruction and subsequent reinjury rates: a systematic review. Phys Sportsmed. 2011;39(3):100–110. PubMed ID: 22030946 doi:10.3810/psm.2011.09.1926

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Abrams GD, Harris JD, Gupta AK, et al. Functional performance testing after anterior cruciate ligament reconstruction: a systematic review. Orthop J Sports Med. 2014;2(1):2325967113518305. PubMed ID: 26535266 doi:10.1177/2325967113518305

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg MA. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med. 2016;50(13):804–808. PubMed ID: 27162233 doi:10.1136/bjsports-2016-096031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Lepley LK. Deficits in quadriceps strength and patient-oriented outcomes at return to activity after ACL reconstruction: a review of the current literature. Sports Health Multidiscip Approach. 2015;7(3):231–238. PubMed ID: 26131300 doi:10.1177/1941738115578112

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Palmieri-Smith RM, Lepley LK. Quadriceps strength asymmetry after anterior cruciate ligament reconstruction alters knee joint biomechanics and functional performance at time of return to activity. Am J Sports Med. 2015;43(7):1662–1669. PubMed ID: 25883169 doi:10.1177/0363546515578252

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hamilton RT, Shultz SJ, Schmitz RJ, Perrin DH. Triple-hop distance as a valid predictor of lower limb strength and power. J Athl Train. 2008;43(2):144–151. PubMed ID: 18345338 doi:10.4085/1062-6050-43.2.144

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Munro AG, Herrington LC. Between-session reliability of four hop tests and the agility T-test. J Strength Cond Res. 2011;25(5):1470–1477. PubMed ID: 21116200 doi:10.1519/JSC.0b013e3181d83335

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Noyes FR, Barber SD, Mangine RE. Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. Am J Sports Med. 1991;19(5):513–518. PubMed ID: 1962720 doi:10.1177/036354659101900518

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Rohman E, Steubs JT, Tompkins M. Changes in involved and uninvolved limb function during rehabilitation after anterior cruciate ligament reconstruction: implications for Limb Symmetry Index measures. Am J Sports Med. 2015;43(6):1391–1398. PubMed ID: 25828078 doi:10.1177/0363546515576127

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Roberts D, Kuenze C, Saliba S, Hart JM. Accessory muscle activation during the superimposed burst technique. J Electromyogr Kinesiol. 2012;22(4):540–545. PubMed ID: 22321959 doi:10.1016/j.jelekin.2012.01.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    DiFabio M, Slater LV, Norte G, Goetschius J, Hart JM, Hertel J. Relationships of functional tests following ACL reconstruction: exploratory factor analyses of the lower extremity assessment protocol. J Sport Rehabil. 2018;27(2):144–150.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    McGrath TM, Waddington G, Scarvell JM, et al. The effect of limb dominance on lower limb functional performance—a systematic review. J Sports Sci. 2016;34(4):289–302. PubMed ID: 26055387 doi:10.1080/02640414.2015.1050601

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Sullivan GM, Feinn R. Using effect size—or why the p value is not enough. J Grad Med Educ. 2012;4(3):279–282. PubMed ID: 23997866 doi:10.4300/JGME-D-12-00156.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Schiltz M, Lehance C, Maquet D, Bury T, Crielaard JM, Croisier JL. Explosive strength imbalances in professional basketball players. J Athl Train. 2009;44(1):39–47. PubMed ID: 19180217 doi:10.4085/1062-6050-44.1.39

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Ostenberg A, Roos E, Ekdahl C, Roos H. Isokinetic knee extensor strength and functional performance in healthy female soccer players. Scand J Med Sci Sports. 1998;8(5):257–264. PubMed ID: 9809383 doi:10.1111/j.1600-0838.1998.tb00480.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hart NH, Nimphius S, Spiteri T, Newton RU. Leg strength and lean mass symmetry influences kicking performance in Australian Football. J Sports Sci Med. 2014;13(1):157–165. PubMed ID: 24570620

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Barber SD, Noyes FR, Mangine RE, McCloskey JW, Hartman W. Quantitative assessment of functional limitations in normal and anterior cruciate ligament-deficient knees. Clin Orthop Relat Res. 1990;(255):204–214. PubMed ID: 2347154

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Phillips BA, Lo SK, Mastaglia FL. Isokinetic and isometric torque values using a Kin-Com dynamometer in normal subjects aged 20 to 69 years. Isokinet Exerc Sci. 2000;8(3):147–159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Teyhen DS, Riebel MA, McArthur DR, et al. Normative data and the influence of age and gender on power, balance, flexibility, and functional movement in healthy service members. Mil Med. 2014;179(4):413–420. PubMed ID: 24690966 doi:10.7205/MILMED-D-13-00362

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol. 2000;89(1):81–88. PubMed ID: 10904038 doi:10.1152/jappl.2000.89.1.81

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Staron RS, Hagerman FC, Hikida RS, et al. Fiber type composition of the vastus lateralis muscle of young men and women. J Histochem Cytochem. 2000;48(5):623–629. PubMed ID: 10769046 doi:10.1177/002215540004800506

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Maughan RJ, Watson JS, Weir J. Strength and cross-sectional area of human skeletal muscle. J Physiol. 1983;338:37–49. PubMed ID: 6875963 doi:10.1113/jphysiol.1983.sp014658

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Young A. The relative isometric strength of type I and type II muscle fibres in the human quadriceps. Clin Physiol. 1984;4(1):23–32. PubMed ID: 6538128 doi:10.1111/j.1475-097X.1984.tb00641.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 204 204 35
Full Text Views 19 19 5
PDF Downloads 10 10 4