Effect of Impairment-Based Rehabilitation on Lower Leg Muscle Volumes and Strength in Patients With Chronic Ankle Instability: A Preliminary Study

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $74.00

1 year subscription

USD $99.00

Student 2 year subscription

USD $141.00

2 year subscription

USD $185.00

Context: Patients with chronic ankle instability (CAI) have demonstrated atrophy of foot and ankle musculature and deficits in ankle strength. The effect of rehabilitation on muscle morphology and ankle strength has not previously been investigated in patients with CAI. Objective: Our objective was to analyze the effect of impairment-based rehabilitation on intrinsic and extrinsic foot and ankle muscle volumes and strength in patients with CAI. Design: Controlled laboratory study. Setting: Laboratory. Patients: Five young adults with CAI. Intervention: Twelve sessions of supervised impairment-based rehabilitation that included range of motion, strength, balance, and functional exercises. Main Outcome Measures: Measures of extrinsic and intrinsic foot muscle volume and ankle strength measured before and after 4 weeks of supervised rehabilitation. Novel fast-acquisition magnetic resonance imaging was used to scan from above the femoral condyles through the entire foot. The perimeter of each muscle was outlined on each axial slice and then the 2-dimensional area was multiplied by the slice thickness (5 mm) to calculate muscle volume. Plantar flexion, dorsiflexion, inversion, and eversion isometric strength were measured using a hand-held dynamometer. Results: Rehabilitation resulted in hypertrophy of all extrinsic foot muscles except for the flexor hallucis longus and peroneals. Large improvements were seen in inversion, eversion, and plantar flexion strength following rehabilitation. Effect sizes for significant differences following rehabilitation were all large and ranged from 1.54 to 3.35. No significant differences were identified for intrinsic foot muscle volumes. Conclusion: Preliminary results suggest that impairment-based rehabilitation for CAI can induce hypertrophy of extrinsic foot and ankle musculature with corresponding increases in ankle strength.

Feger, Handsfield, Blemker, Hart, Saliba, Abel, Park, and Hertel are with the University of Virginia, Charlottesville, VA, USA. Donovan is with the University of North Carolina at Charlotte, Charlotte, NC, USA. Herb is with Weber State University, Ogden, UT, USA.

Feger (mf3de@virginia.edu) is corresponding author.
Journal of Sport Rehabilitation
Article Sections
References
  • 1.

    Waterman BROwens BDDavey SZacchilli MABelmont PJ. The epidemiology of ankle sprains in the United States. J Bone Joint Surg Am. 2010;92(13):22792284. PubMed ID: 20926721 doi:10.2106/JBJS.I.01537

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Waterman BRBelmont PJCameron KLDeBerardino TMOwens BD. Epidemiology of ankle sprain at the United States military academy. Am J Sports Med. 2010;38(4):797803. PubMed ID: 20145281 doi:10.1177/0363546509350757

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hubbard-Turner TTurner MJ. Physical activity levels in college students with chronic ankle instability. J Athl Train. 2015;50(7):742747. PubMed ID: 25898110 doi:10.4085/1062-6050-50.3.05

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    McKay GDGoldie PAPayne WROakes BW. Ankle injuries in basketball: injury rate and risk factors. Br J Sports Med. 2001;35(2):103108. PubMed ID: 11273971 doi:10.1136/bjsm.35.2.103

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Feger MGlaviano NDonovan Let al. Current trends in the management of lateral ankle sprain in the United States. Clin J Sport Med. 2017;27(2):145152. PubMed ID: 27347860 doi:10.1097/JSM.0000000000000321

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Gerber JPWilliams GNScoville CRArciero RATaylor DC. Persistent disability associated with ankle sprains: a prospective examination of an athletic population. Foot Ankle Int. 1998;19(10):653660. PubMed ID: 9801078 doi:10.1177/107110079801901002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Gribble PADelahunt EBleakley Cet al. Selection criteria for patients with chronic ankle instability in controlled research: a position statement of the international ankle consortium. J Orthop Sports Phys Ther. 2013;43(8):585591. PubMed ID: 23902805 doi:10.2519/jospt.2013.0303

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Saltzman CLSalamon MLBlanchard GMet al. Epidemiology of ankle arthritis: report of a consecutive series of 639 patients from a tertiary orthopaedic center. Iowa Orthop J. 2005;25:4446. PubMed ID: 16089071

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Konradsen LBech LEhrenbjerg MNickelsen T. Seven years follow-up after ankle inversion trauma. Scand J Med Sci Sports. 2002;12(3):129135. PubMed ID: 12135444 doi:10.1034/j.1600-0838.2002.02104.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Anandacoomarasamy ABarnsley L. Long term outcomes of inversion ankle injuries. Br J Sports Med. 2005;39(3):14. PubMed ID: 15728682 doi:10.1136/bjsm.2004.011676

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Witchalls JBlanch PWaddington GAdams R. Intrinsic functional deficits associated with increased risk of ankle injuries: a systematic review with meta-analysis. Br J Sports Med. 2012;46(7):515523. PubMed ID: 22171337 doi:10.1136/bjsports-2011-090137

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Ashton-Miller JAOttaviani RAHutchinson CWojtys EM. What best protects the inverted weightbearing ankle against further inversion? Evertor muscle strength compares favorably with shoe height, athletic tape, and three orthoses. Am J Sports Med. 1996;24(6):800809. PubMed ID: 8947403 doi:10.1177/036354659602400616

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Kaminski TWBuckley BDPowers MEHubbard TJOrtiz C. Effect of strength and proprioception training on eversion to inversion strength ratios in subjects with unilateral functional ankle instability. Br J Sports Med. 2003;37(5):410415. PubMed ID: 14514531 doi:10.1136/bjsm.37.5.410

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hubbard TJKramer LCDenegar CRHertel J. Contributing factors to chronic ankle instability. Foot Ankle Int. 2007;28(3):343354. PubMed ID: 17371658 doi:10.3113/FAI.2007.0343

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Lentell GBaas BLopez DMcGuire LSarrels MSnyder P. The contributions of proprioceptive deficits, muscle function, and anatomic laxity to functional instability of the ankle. J Orthop Sports Phys Ther. 1995;21(4):206215. PubMed ID: 7773272 doi:10.2519/jospt.1995.21.4.206

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Lentell GLKatzman LLWalters MR. The relationship between muscle function and ankle stability. J Orthop Sports Phys Ther. 1990;11(12):605611. PubMed ID: 18787260 doi:10.2519/jospt.1990.11.12.605

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bernier JNPerrin DHRijke A. Effect of unilateral functional instability of the ankle on postural sway and inversion and eversion strength. J Athl Train. 1997;32(3):226232. PubMed ID: 16558454

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kaminski TWPerrin DHGansneder BM. Eversion strength analysis of uninjured and functionally unstable ankles. J Athl Train. 1999;34(3):239245. PubMed ID: 16558571

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Feger MSnell SHandsfield Get al. Diminished foot and ankle muscle volumes in young adults with chronic ankle instability. Orthop J Sports Med. 2016;4(6):2325967116653719. PubMed ID: 27570782 doi:10.1177/2325967116653719

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hale SAHertel JOlmsted-Kramer LC. The effect of a 4-week comprehensive rehabilitation program on postural control and lower extremity function in individuals with chronic ankle instability. J Orthop Sports Phys Ther. 2007;37(6):303311. PubMed ID: 17612356 doi:10.2519/jospt.2007.2322

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Hale SAFergus AAxmacher RKiser K. Bilateral improvements in lower extremity function after unilateral balance training in individuals with chronic ankle instability. J Athl Train. 2014;49(2):181191. PubMed ID: 24568231 doi:10.4085/1062-6050-49.2.06

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Donovan LHart JSaliba Set al. Rehabilitation for chronic ankle instability with and without destabilization devices: a randomized controlled trial. J Athl Train. 2016;51(3):233251. PubMed ID: 26934211 doi:10.4085/1062-6050-51.3.09

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Mckeon PIngersoll CKerrigan DCSaliba EBennett BHertel J. Balance training improves function and postural control in those with chronic ankle instability. Med Sci Sports Exerc. 2008;40(10):18101819. PubMed ID: 18799992 doi:10.1249/MSS.0b013e31817e0f92

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hall EADocherty CLSimon JKingma JJKlossner JC. Strength-training protocols to improve deficits in participants with chronic ankle instability: a randomized controlled trial. J Athl Train. 2015;50(1):3644. PubMed ID: 25365134 doi:10.4085/1062-6050-49.3.71

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Docherty CLMoore JHArnold BL. Effects of strength training on strength development and joint position sense in functionally unstable ankles. J Athl Train. 1998;33(4):310314. PubMed ID: 16558526

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Sekir UYildiz YHazneci BOrs FAydin T. Effect of isokinetic training on strength, functionality and proprioception in athletes with functional ankle instability. Knee Surg Sports Traumatol Arthrosc. 2007;15(5):654664. PubMed ID: 16770637 doi:10.1007/s00167-006-0108-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Konradsen LBohsen Ravn J. Prolonged peroneal reaction time in ankle instability. Int J Sports Med. 1991;12(3):290292. PubMed ID: 1889937 doi:10.1055/s-2007-1024683

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Lofvenberg RKarrholm JSundelin GAhlgren O. Prolonged reaction time in patients with chronic lateral instability of the ankle. Am J Sports Med. 1995;23(4):414417. PubMed ID: 7573649 doi:10.1177/036354659502300407

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Moritani TdeVries HA. Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med Rehabil. 1979;58(3):115130. PubMed ID: 453338

    • Search Google Scholar
    • Export Citation
  • 30.

    Handsfield GGMeyer CHHart JMAbel MFBlemker SS. Relationships of 35 lower limb muscles to height and body mass quantified using MRI. J Biomech. 2014;47(3):631638. PubMed ID: 24368144 doi:10.1016/j.jbiomech.2013.12.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Godin GJobin JBouillon J. Assessment of leisure time exercise behavior by self-report: a concurrent validity study. Can J Public Health. 1986;77(5):359362. PubMed ID: 3791117

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Martin RLIrrgang JJBurdett RGConti SFVan Swearingen JM. Evidence of validity for the Foot and Ankle Ability Measure (FAAM). Foot Ankle Int. 2005;26(11):968983. PubMed ID: 16309613 doi:10.1177/107110070502601113

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Carcia CAMartin RLDrouin JM. Validity of the Foot and Ankle Ability Measure in athletes with chronic ankle instability. J Athl Train. 2008;43(2):179183. PubMed ID: 18345343 doi:10.4085/1062-6050-43.2.179

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Donahue MSimon JDocherty CL. Reliability and validity of a new questionnaire created to establish the presence of functional ankle instability: the IdFAI. Athl Train Sports Health Care. 2013;5(1):3843. doi:10.3928/19425864-20121212-02

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Kelln BMMcKeon POGontkof LMHertel J. Hand-held dynamometry: reliability of lower extremity muscle testing in healthy, physically active, young adults. J Sport Rehab. 2008;17(2):160170. PubMed ID: 18515915 doi:10.1123/jsr.17.2.160

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Donovan LHertel J. A new paradigm for rehabilitation of patients with chronic ankle instability. Phys Sportsmed. 2012;40(4):4151. PubMed ID: 23306414 doi:10.3810/psm.2012.11.1987

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Norte GEKnaus KRKuenze Cet al. MRI-based assessment of lower extremity muscle volumes in patients before and after ACL reconstruction. J Sport Rehabil. 2018;27(3):201212. PubMed ID: 28290752 doi:10.1123/jsr.2016-0141

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Handsfield GGMeyer CHAbel MFBlemker SS. Heterogeneity of muscle sizes in the lower limbs of children with cerebral palsy. Muscle Nerve. 2016;53(6):933945. PubMed ID: 26565390 doi:10.1002/mus.24972

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Hilsdale, NJ: Routledge; 1988.

  • 40.

    Rutherford OJones D. The role of learning and coordination in strength training. Eur J Appl Physiol Occup Physiol. 1986;55(1):100105. PubMed ID: 3698983 doi:10.1007/BF00422902

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687708. PubMed ID: 19204579 doi:10.1249/MSS.0b013e3181915670

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Sale DG. Neural adaptation to resistance training. Med Sci Sports Exerc. 1988;20(suppl 5):S135145. PubMed ID: 3057313 doi:10.1249/00005768-198810001-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Wernbom MAugustsson JThomeé R. The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med. 2007;37(3):225264. PubMed ID: 17326698 doi:10.2165/00007256-200737030-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Feger MADonovan LHart JMHertel J. Lower extremity muscle activation during functional exercises in patients with and without chronic ankle instability. PM R. 2014;6(7):602611. PubMed ID: 24412672 doi:10.1016/j.pmrj.2013.12.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Abe TKearns CFSato Y. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J Appl Physiol. 2006;100(5):14601466. PubMed ID: 16339340 doi:10.1152/japplphysiol.01267.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Seynnes ORde Boer MNarici MV. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol. 2007;102(1):368373. PubMed ID: 17053104 doi:10.1152/japplphysiol.00789.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 189 189 46
Full Text Views 22 22 4
PDF Downloads 17 17 2
Altmetric Badge
PubMed
Google Scholar