Effect of Graft Type on Balance and Hop Tests in Adolescent Males Following Anterior Cruciate Ligament Reconstruction

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Recent epidemiology studies indicated a steady increase of anterior cruciate ligament (ACL) injury in young athletes. ACL reconstruction (ACLR) is currently a standard of care, but the effect of ACLR graft including bone patellar tendon bone (BTB), hamstring tendon (HT), or iliotibial band (ITB) on balance and hop performance is understudied. Objective: To compare balance and hop deficits between uninvolved and reconstructed limbs in each autograft type (aim 1) and among the 3 autograft groups (aim 2). Setting: Biomechanical laboratory. Participants: Male ACLR patients who are younger than 22 years (total N = 160; BTB: N = 19, HT: N = 108, ITB: N = 33). Intervention: Approximately 6 to 9 months following ACLR, Y-balance and 4 types of hop tests were measured bilaterally. Main Outcome Measures: Limb symmetry index of balance and hop tests within each graft type and between the 3 graft types. Results: In the BTB group, significant anterior reach, single hop, triple hops, and cross-over hops deficits were observed on the ACLR limb compared with the uninvolved limb. The HT group showed significant deficits in single hop, triple hops, and cross-over hops on the ACLR limb relative to the uninvolved limb. Compared with the uninvolved limb, significantly decreased triple hops and 6-m timed hop deficits in the ACLR limb were recorded in the ITB group. When controlling for confounders and comparing among the 3 autograft types, the only significant difference was anterior reach, in which the BTB group showed significant deficits. Conclusion: Compared with the uninvolved limb, significant hop deficits in ACLR limb were prevalent among adolescent ACLR at ∼6 to 9 months postoperatively. After controlling covariates, significantly reduced anterior reach balance was found in the BTB group compared with the HT and ITB groups.

Sugimoto, Heyworth, Brodeur, Kramer, Kocher, and Micheli are with the Micheli Center for Sports Injury Prevention, Waltham, MA; and the Division of Sports Medicine, Department of Orthopedics, Boston Children’s Hospital, Boston, MA. Sugimoto, Heyworth, Kramer, Kocher, and Micheli are also with Harvard Medical School, Boston, MA.

Sugimoto (dai.sugimoto@childrens.harvard.edu) is corresponding author.
  • 1.

    McCullough KA, Phelps KD, Spindler KP, et al. Return to high school- and college-level football after anterior cruciate ligament reconstruction: a Multicenter Orthopaedic Outcomes Network (MOON) cohort study. Am J Sports Med. 2012;40(11):25232529. PubMed ID: 22922520 doi:10.1177/0363546512456836

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Ardern CL, Taylor NF, Feller JA, Whitehead TS, Webster KE. Sports participation 2 years after anterior cruciate ligament reconstruction in athletes who had not returned to sport at 1 year: a prospective follow-up of physical function and psychological factors in 122 athletes. Am J Sports Med. 2015;43(4):848856. PubMed ID: 25583757 doi:10.1177/0363546514563282

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Webster KE, Feller JA, Leigh WB, Richmond AK. Younger patients are at increased risk for graft rupture and contralateral injury after anterior cruciate ligament reconstruction. Am J Sports Med. 2014;42(3):641647. PubMed ID: 24451111 doi:10.1177/0363546513517540

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE. Incidence of contralateral and ipsilateral anterior cruciate ligament (ACL) injury after primary ACL reconstruction and return to sport. Clin J Sports Med. 2012;22(2):116121. PubMed ID: 22343967 doi:10.1097/JSM.0b013e318246ef9e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Petersen W, Taheri P, Forkel P, Zantop T. Return to play following ACL reconstruction: a systematic review about strength deficits. Arch Orthop Trauma Surg. 2014;134(10):14171428. PubMed ID: 25091127 doi:10.1007/s00402-014-1992-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Petersen W, Zantop T. Return to play following ACL reconstruction: survey among experienced arthroscopic surgeons (AGA instructors). Arch Orthop Traumatol Surg. 2013;133(7):969977. PubMed ID: 23604790 doi:10.1007/s00402-013-1746-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Gardinier ES, Di Stasi S, Manal K, Buchanan TS, Snyder-Mackler L. Knee contact force asymmetries in patients who failed return-to-sport readiness criteria 6 months after anterior cruciate ligament reconstruction. Am J Sports Med. 2014;42(12):29172925. PubMed ID: 25318940 doi:10.1177/0363546514552184

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Goodstadt NM, Hunter-Giordano A, Axe MJ, Snyder-Mackler L. Functional testing to determine readiness to discontinue brace use, one year after acl reconstruction. Int J Sports Phys Ther. 2013;8(2):9196. PubMed ID: 23593546

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Wells L, Dyke JA, Albaugh J, Ganley T. Adolescent anterior cruciate ligament reconstruction: a retrospective analysis of quadriceps strength recovery and return to full activity after surgery. J Pediatr Orthop. 2009;29(5):486489. PubMed ID: 19568022 doi:10.1097/BPO.0b013e3181aa2197

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Clagg S, Paterno MV, Hewett TE, Schmitt LC. Performance on the modified star excursion balance test at the time of return to sport following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2015;45(6):444452. PubMed ID: 25899211 doi:10.2519/jospt.2015.5040

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bizzini M, Hancock D, Impellizzeri F. Suggestions from the field for return to sports participation following anterior cruciate ligament reconstruction: soccer. J Orthop Sports Phys Ther. 2012;42(4):304312. PubMed ID: 22467065 doi:10.2519/jospt.2012.4005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Adams D, Logerstedt DS, Hunter-Giordano A, Axe MJ, Snyder-Mackler L. Current concepts for anterior cruciate ligament reconstruction: a criterion-based rehabilitation progression. J Orthop Sports Phys Ther. 2012;42(7):601614. PubMed ID: 22402434 doi:10.2519/jospt.2012.3871

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Beischer S, Senorski EH, Thomee C, Samuelsson K, Thomee R. Young athletes return too early to knee-strenuous sport, without acceptable knee function after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2017. PubMed ID: 29032484 doi:10.1007/s00167-017-4747-8

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Ebert JR, Edwards P, Yi L, et al. Strength and functional symmetry is associated with post-operative rehabilitation in patients following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2017. PubMed ID: 28916871 doi:10.1007/s00167-017-4712-6

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Webster KE, Feller JA. Younger patients and men achieve higher outcome scores than older patients and women after anterior cruciate ligament reconstruction. Clin Orthop Relat Res. 2017;475(10):24722480. PubMed ID: 28718171 doi:10.1007/s11999-017-5418-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Gokeler A, Welling W, Benjaminse A, Lemmink K, Seil R, Zaffagnini S. A critical analysis of limb symmetry indices of hop tests in athletes after anterior cruciate ligament reconstruction: a case control study. Orthop Traumatol Surg Res. 2017;103(6):947951. PubMed ID: 28428033 doi:10.1016/j.otsr.2017.02.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Moya-Angeler J, Vaquero J, Forriol F. Evaluation of lower limb kinetics during gait, sprint and hop tests before and after anterior cruciate ligament reconstruction. J Orthop Traumatol. 2017;18(2):177184. PubMed ID: 28361285 doi:10.1007/s10195-017-0456-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med. 2016;44(7):18611876. PubMed ID: 26772611 doi:10.1177/0363546515621554

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Kaeding CC, Pedroza AD, Reinke EK, Huston LJ, Spindler KP. Risk factors and predictors of subsequent ACL injury in either knee after ACL reconstruction: prospective analysis of 2488 primary ACL reconstructions from the MOON cohort. Am J Sports Med. 2015;43(7):15831590. PubMed ID: 25899429 doi:10.1177/0363546515578836

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Csintalan RP, Inacio MC, Funahashi TT, Maletis GB. Risk factors of subsequent operations after primary anterior cruciate ligament reconstruction. Am J Sports Med. 2014;42(3):619625. PubMed ID: 24335588 doi:10.1177/0363546513511416

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Hettrich CM, Dunn WR, Reinke EK, Spindler KP. The rate of subsequent surgery and predictors after anterior cruciate ligament reconstruction: two- and 6-year follow-up results from a multicenter cohort. Am J Sports Med. 2013;41(7):15341540. PubMed ID: 23722056 doi:10.1177/0363546513490277

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Micheli LJ, Rask B, Gerberg L. Anterior cruciate ligament reconstruction in patients who are prepubescent. Clin Orthop Relat Res. 1999;364:4047. PubMed ID: 10416390 doi:10.1097/00003086-199907000-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Kocher MS, Garg S, Micheli LJ. Physeal sparing reconstruction of the anterior cruciate ligament in skeletally immature prepubescent children and adolescents. J Bone Joint Surg Am. 2005;87(11):23712379. PubMed ID: 16264110 doi:10.2106/JBJS.D.02802

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Kocher MS, Garg S, Micheli LJ. Physeal sparing reconstruction of the anterior cruciate ligament in skeletally immature prepubescent children and adolescents. Surgical technique. J Bone Joint Surg Am. 2006;88(suppl 1 pt 2):283293. PubMed ID: 16951100 doi:10.2106/JBJS.F.00441

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Sena M, Chen J, Dellamaggioria R, Coughlin DG, Lotz JC, Feeley BT. Dynamic evaluation of pivot-shift kinematics in physeal-sparing pediatric anterior cruciate ligament reconstruction techniques. Am J Sports Med. 2013;41(4):826834. PubMed ID: 23408589 doi:10.1177/0363546513476470

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kennedy A, Coughlin DG, Metzger MF, et al. Biomechanical evaluation of pediatric anterior cruciate ligament reconstruction techniques. Am J Sports Med. 2011;39(5):964971. PubMed ID: 21257848 doi:10.1177/0363546510390189

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Schmitt LC, Paterno MV, Ford KR, Myer GD, Hewett TE. Strength asymmetry and landing mechanics at return to sport after anterior cruciate ligament reconstruction. Med Sci Sports Exerc. 2015;47(7):14261434. PubMed ID: 25373481 doi:10.1249/MSS.0000000000000560

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Xergia SA, Pappas E, Zampeli F, Georgiou S, Georgoulis AD. Asymmetries in functional hop tests, lower extremity kinematics, and isokinetic strength persist 6 to 9 months following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2013;43(3):154162. PubMed ID: 23322072 doi:10.2519/jospt.2013.3967

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Greenberg EM, Greenberg ET, Ganley TJ, Lawrence JT. Strength and functional performance recovery after anterior cruciate ligament reconstruction in preadolescent athletes. Sports Health. 2014;6(4):309312. PubMed ID: 24982702 doi:10.1177/1941738114537594

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Cohen J. A power primer. Psychol Bull. 1992;112(1):155159. PubMed ID: 19565683

  • 31.

    Kotrlik JW, Williams HA. The incorporation of effect size in information technology, learning, and performance research. Inf Technol Learn Perform J. 2003;21:17.

    • Search Google Scholar
    • Export Citation
  • 32.

    Kautzner J, Kos P, Hanus M, Trc T, Havlas V. A comparison of ACL reconstruction using patellar tendon versus hamstring autograft in female patients: a prospective randomised study. Int Orthop. 2015;39(1):125130. PubMed ID: 25128968 doi:10.1007/s00264-014-2495-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Lund B, Nielsen T, Fauno P, Christiansen SE, Lind M. Is quadriceps tendon a better graft choice than patellar tendon? A prospective randomized study. Arthroscopy. 2014;30(5):593598. PubMed ID: 24630956 doi:10.1016/j.arthro.2014.01.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Shi DL, Yao ZJ. Knee function after anterior cruciate ligament reconstruction with patellar or hamstring tendon: a meta-analysis. Chin Medical. 2011;124(23):40564062. PubMed ID: 22340342

    • Search Google Scholar
    • Export Citation
  • 35.

    Fibiger W, Kukielka RT. Evaluation of anterior stability of knee joint following arthroscopic ACL reconstruction with patellar ligament. Ortop Traumatol Rehabil. 2011;13(6):583590. PubMed ID: 22248463

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Hiemstra LA, Webber S, MacDonald PB, Kriellaars DJ. Hamstring and quadriceps strength balance in normal and hamstring anterior cruciate ligament-reconstructed subjects. Clin J Sports Med. 2004;14(5):274280. PubMed ID: 15377966

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Ithurburn MP, Paterno MV, Ford KR, Hewett TE, Schmitt LC. Young athletes with quadriceps femoris strength asymmetry at return to sport after anterior cruciate ligament reconstruction demonstrate asymmetric single-leg drop-landing mechanics. Am J Sports Med. 2015;43(11):27272737. PubMed ID: 26359376 doi:10.1177/0363546515602016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Palmieri-Smith RM, Lepley LK. Quadriceps strength asymmetry after anterior cruciate ligament reconstruction alters knee joint biomechanics and functional performance at time of return to activity. Am J Sports Med. 2015;43(7):16621669. PubMed ID: 25883169 doi:10.1177/0363546515578252

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Hashemi J, Breighner R, Jang TH, Chandrashekar N, Ekwaro-Osire S, Slauterbeck JR. Increasing pre-activation of the quadriceps muscle protects the anterior cruciate ligament during the landing phase of a jump: an in vitro simulation. Knee. 2010;17(3):235241. PubMed ID: 19864146 doi:10.1016/j.knee.2009.09.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    LaBella CR, Hennrikus W, Hewett TE. Anterior cruciate ligament injuries: diagnosis, treatment, and prevention. Pediatrics. 2014;133(5):14371450. doi:10.1542/peds.2014-0623

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Serpell BG, Scarvell JM, Pickering MR, et al. Medial and lateral hamstrings and quadriceps co-activation affects knee joint kinematics and ACL elongation: a pilot study. BMC Musculoskeletal Disorders. 2015;16:348. PubMed ID: 26563153 doi:10.1186/s12891-015-0804-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Thomas AC, Judd DL, Davidson BS, Eckhoff DG, Stevens-Lapsley JE. Quadriceps/hamstrings co-activation increases early after total knee arthroplasty. Knee. 2014;21(6):11151119. PubMed ID: 25218971 doi:10.1016/j.knee.2014.08.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Wallace J, Covassin T, Beidler E. Sex differences in high school athletes’ knowledge of sport-related concussion symptoms and reporting behaviors. J Athl Train. 2017; 52(3): 228235. PubMed ID: 28387561 doi:10.4085/1062-6050-52.3.06

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 318 318 39
Full Text Views 25 25 0
PDF Downloads 13 13 0