The Influence of Circadian Variation on Etiological Markers of Ankle Injury

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Clinical and functional assessments are performed regularly in sporting environments to screen for performance deficits and injury risk. Circadian rhythms have been demonstrated to affect human performance; however, the influence of time of day on a battery of multiple ankle injury risk factors has yet to be established within athletic populations. Objectives: To investigate the influence of circadian variation on a battery of tests used to screen for ankle etiological risk factors. Design: Randomized crossover design. Setting: University laboratory. Participants: A total of 33 semiprofessional soccer players (age = 24.9 [4.4] y; height = 1.77 [0.17] m; body mass = 75.47 [7.98] kg) completed 3 randomized experimental trials (07∶00, 12∶00, and 19∶00 h). Main Outcome Measures: Trials involved the completion of a standardized test battery comprising the Biodex Stability System, Star Excursion Balance Test, isokinetic inversion: eversion ratio, joint position sense, and a drop-landing inversion cutting maneuver. Results: Repeated measures analysis of variance revealed significantly (P < .05) lower values for all Biodex Stability System indicia; overall stability index (1.10 [0.31] a.u.), anterior–posterior (0.76 [0.21] a.u.), and mediolateral (0.68 [0.23]) at 12∶00 hours when compared with 07∶00 hours (1.30 [0.45] a.u.; 0.96 [0.26] a.u.; 0.82 [0.40] a.u.), respectively. However, no significant (P ≥ .05) main effects for time of day were reported for any other test. Conclusions: Circadian influence on ankle etiological risk factors was task dependent, with measures of proprioception, strength, and Star Excursion Balance Test displaying no circadian variation, indicating no association between time of day and markers of injury risk. However, the Biodex Stability System displayed improved performance at midday, indicating postural stability tasks requiring unanticipated movements to display a time of day effect and potential increased injury risk. Consequently, time of testing for this task should be standardized to ensure correct interpretations of assessments and/or interventions.

The authors are with the Sports Science Laboratories, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, United Kingdom.

Brogden (brogdenc@edgehill.ac.uk) is corresponding author.
  • 1.

    Walden M, Hagglund J, Ekstrand J. Time-trends and circumstances surrounding ankle injuries in men’s professional football: an 11-year follow-up of the UEFA Champions League injury study. Br J Sports Med. 2013;47(12):1–6. doi:10.1136/bjsports-2013-092223

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Woods C, Hawkins R, Hodson A. The Football Association Medical Research Programme: an audit of injuries in professional football: an analysis of ankle sprains. Br J Sports Med. 2003;37:233–239. PubMed ID: 12782548 doi:10.1136/bjsm.37.3.233

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hiller CE, Refshague KM, Herbert RD, Kilbreath SL. Intrinsic predictors of lateral ankle sprain in adolescent dancers: a prospective cohort study. Clin J Sports Med. 2008;18(1):44–48. doi:10.1097/JSM.0b013e31815f2b35

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Mohammadi F, Roozdar A. Effects of fatigue due to contraction of evertor muscles on the ankle joint position sense in male soccer players. Am J Sports Med. 2010;38(4):824–828. doi:10.1177/0363546509354056

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Semple S, Esterhuysen C, Grace J. The effects of Kinesio ankle taping on postural stability in semi-professional rugby union players. J Phys Ther Sci. 2012;24:1239–1242. doi:10.1589/jpts.24.1239

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Hartsell HD, Spaulding SJ. Eccentric/concentric ratios at selected velocities for the invertor and evertor muscles of the chronically unstable ankle. Br J Sports Med. 1999;33:255–258. PubMed ID: 10450480 doi:10.1136/bjsm.33.4.255

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Bahr R, Holme I. Risk factors for sports injuries–a methodological approach. Br J Sports Med. 2003;37:384–392. PubMed ID: 14514527 doi:10.1136/bjsm.37.5.384

  • 8.

    Arendt J, Middleton B. Melatonin and the body clock. Biol Rhythm Res. 2009;40:81. doi:10.1080/09291010802067114

  • 9.

    Drust B, Waterhouse J, Atkinson G, Edwards B, Reilly T. Circadian rhythms in sports performance–an update. Int J Sports Physiol Perform. 2005;22:21–44. PubMed ID: 15865319

    • Search Google Scholar
    • Export Citation
  • 10.

    Reilly T, Waterhouse J. Sports performance: is there evidence that the body clock plays a role? Eur J Appl Physiol. 2009;106:321–332. PubMed ID: 19418063 doi:10.1007/s00421-009-1066-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Edwards B, Waterhouse J, Reilly T. The effects of circadian rhythmicity and time-awake on a simple motor task. Chronobiol Int. 2007;24(6):1109–1124. PubMed ID: 18075802 doi:10.1080/07420520701795316

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Arendt J. Melatonin, characteristics, concerns, and prospects. J Biol Rhythms. 2005;20:291–303. PubMed ID: 16077149 doi:10.1177/0748730405277492

  • 13.

    Teo W, Newton MJ, McGuigan MR. Circadian rhythms in exercise performance: implications for hormonal and muscular adaptation. J Sports Sci Med. 2011;10:600–606. PubMed ID: 24149547

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Brager AJ, Mistovich RJ. Game times and higher winning percentages of west coast teams of the National Football League correspond with reduced prevalence of regular season injury. J Strength Cond Res. 2017;31(2):462–467. PubMed ID: 27893483

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Gribble PA, Tucker WS, White PA. Time-of-day influences on static and dynamic postural control. J Athl Train. 2007;42:35–41. PubMed ID: 17597941

  • 16.

    Heinbaugh EM, Smith DT, Zhu Q, Wilson MA, Dai B. The effect of time-of-day on static and dynamic balance in recreational athletes. Sports Biomech. 2015;14(3):361–373. PubMed ID: 26517605 doi:10.1080/14763141.2015.1084036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Jorgensen MG, Rathleff MS, Laessoe U, Caserotti P, Nielsen OB, Aagaard P. Time-of-day influences postural balance in older adults. Gait Posture. 2012;35:653–657. PubMed ID: 22390960 doi:10.1016/j.gaitpost.2011.12.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Nicolas A, Gauthier A, Michaut A, Davenne D. Effect of circadian rhythm of neuromuscular properties on muscle fatigue during concentric and eccentric isokinetic actions. Isokinet Exerc Sci. 2007;15:117–129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Hrysomallis C. Relationship between balance ability, training and sports injury risk. Sports Med. 2007;37:547–556. PubMed ID: 17503879 doi:10.2165/00007256-200737060-00007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Chtourou H, Souissi N. The effect of training at a specific time of day: a review. J Strength Cond Res. 2012;26(7):1984–2005. PubMed ID: 22531613 doi:10.1519/JSC.0b013e31825770a7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Eirale C, Tol JL, Farooq A, Smiley F, Chalabi H. Low injury rate strongly correlates with team success in Qatari professional football. Br J Sports Med. 2013;47:807–808. PubMed ID: 22904292

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Waterhouse J. Circadian rhythms and cognition. Prog Brain Res. 2010;185:131–153. PubMed ID: 21075237

  • 23.

    Arnold BL, Schmitz RJ. Examination of balance measures produced by the biodex stability system. J Athl Train. 1998;33(4):323–327. PubMed ID: 16558529

  • 24.

    Glave AP, Didier JJ, Weatherwax J, Browning SJ, Fiaud V. Testing postural stability: are the star excursion balance test and biodex balance system limits of stability tests consistent? Gait Posture. 2016;43:225–227. PubMed ID: 26514832 doi:10.1016/j.gaitpost.2015.09.028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Gribble PA, Hertel J. Consideration for normalizing measures of the star excursion balance test. Meas Phys Educ Exerc. 2003;7(2):89–100. doi:10.1207/S15327841MPEE0702_3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Brogden C, Greig M. The influence of kinesiology tape on a functionally demanding eversion sprint in healthy male soccer player. J Athl Enhancement. 2014;3:4. doi:10.4172/2324-9080.1000156

    • Search Google Scholar
    • Export Citation
  • 27.

    Lloyd DG. Rationale for training programs to reduce anterior cruciate ligament injuries in Australian football. J Orthop Sports Phys Ther. 2001;31(11):645–654. PubMed ID: 11720297 doi:10.2519/jospt.2001.31.11.645

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Hewett TE, Ford KE, Hoogenboom BJ, Myer GD. Understanding and preventing ACL injuries: current biomechanical and epidemiologic considerations–update 2010. N Am J Sports Phys Ther. 2010;5(4):234–251. PubMed ID: 21655382

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Garrison CJ, Bothwell JM, Wolf G, Aryal S, Thigpen CA. Y balance test anterior reach symmetry at three months is related to single leg functional performance at time of return to sports following anterior cruciate ligament reconstruction. Int J Sports Phys Ther. 2015;10(5):602–611. PubMed ID: 26491610

    • Search Google Scholar
    • Export Citation
  • 30.

    Olmsted LC, Carica CRM, Hertel J, Schultz SJ. Efficacy of the star excursion balance test in detecting reach deficits in subjects with chronic ankle instability. J Athl Train. 2002;37(4):501–505. PubMed ID: 12937574

    • Search Google Scholar
    • Export Citation
  • 31.

    Delahunt E, McGrath A, Doran N, Coughlan GF. Effect of taping on actual and perceived dynamic postural stability in persons with chronic ankle instability. Arch Phys Med Rehabil. 2010;91:1383–1389. PubMed ID: 20801256 doi:10.1016/j.apmr.2010.06.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Hesari AF, Maoud G, Ortakand SM, ali Ndehi M, Nikolaidis P. The relationship between star excursion balance test and lower extremity strength, range of motion and anthropometric characteristics. Med Sport. 2013;17(1):24–28.

    • Search Google Scholar
    • Export Citation
  • 33.

    Dicus JR, Seegmiller JG. Unanticipated ankle inversions are significantly different from anticipated ankle inversions during drop landings: overcoming anticipation bias. J Appl Biomech. 2012;28(2):148–155. PubMed ID: 21908896 doi:10.1123/jab.28.2.148

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Deschenes MR, Kramer WJ, Bush JA, et al. Biorhythmic influences on functional capacity of human muscle and physiological responses. Med Sci Sports Exerc. 1998;30(9):1399–1407. PubMed ID: 9741608

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 95 95 20
Full Text Views 10 10 3
PDF Downloads 3 3 0