Detection of Gluteal Changes Using Ultrasound Imaging During Phases of Gait in Individuals With Medial Knee Displacement

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Medial knee displacement (MKD) is a common risk factor for lower-extremity injury and is related to altered gluteal muscle activity. Ultrasound imaging (USI) is a reliable means to explore mechanical muscle activity; however, no information exists regarding USI of the gluteals during gait in an MKD population. Objective: To determine differences in USI gluteal muscle activity during gait in individuals with and without MKD. Design: Descriptive laboratory study. Setting: University research laboratory. Participants: Out of 28 participants, 14 exhibiting MKD unilaterally during a single-leg squat (19.36 [1.51] y, 169.73 [7.50] cm, and 62.01 [10.57] kg; 10 females) and 14 matched non-MKD subjects (20.29 [1.73] y, 167.24 [9.07] cm, and 67.53 [16.03] kg). Interventions: Bilateral B-mode USI of the gluteus maximus (Gmax) and gluteus medius (Gmed) muscles during quiet stance, heel strike, and a 10-second treadmill walking clip. Main Outcome Measures: Gluteal thickness measures normalized to quiet stance yielded activity ratios, and percentage of muscle thickness change was assessed between heel strike and quiet stance. Differences between groups were assessed with Cohen’s d effect sizes with 95% confidence intervals. Activity ratios with 90% confidence intervals plotted on 10% intervals from 0% to 100% of gait were used to compare groups and limbs. A subsample of images was measured to determine intertester reliability. Results: USI revealed decreased Gmax and Gmed percent change at heel strike (%change = −9.57% [7.15%] and −8.76% [4.26%], respectively). The MKD limb compared with the contralateral limb exhibited decreased Gmed activity ratio at 30% of gait (MKD = 0.89 [0.056]; non-MKD = 1.01 [.052]). Intertester reliability was excellent for gluteus maximus (intraclass correlation coefficient = .987 [.014]) and Gmed (intraclass correlation coefficient = .989 [.013]) measurements. Conclusions: USI highlighted gluteal activity differences of MKD limbs during gait, which may contribute to inadequate hip stabilization during this daily repetitive task. These findings potentiate the use of USI as an intervention- or screening-based visual tool.

The authors are with Exercise and Sport Injury Laboratory, University of Virginia, Charlottesville, VA.

DeJong (afd4au@virginia.edu) is corresponding author.
  • 1.

    Ugalde V, Brockman C, Bailowitz Z, Pollard CD. Single leg squat test and its relationship to dynamic knee valgus and injury risk screening. PM R. 2015;7(3):229235. doi:10.1016/j.pmrj.2014.08.361

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Nguyen AD, Shultz SJ, Schmitz RJ, Luecht RM, Perrin DH. A preliminary multifactorial approach describing the relationships among lower extremity alignment, hip muscle activation, and lower extremity joint excursion. J Athl Train. 2011;46(3):246256. PubMed ID: 21669093 doi:10.4085/1062-6050-46.3.246

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Zeller BL, McCrory JL, Kibler WB, Uhl TL. Differences in kinematics and electromyographic activity between men and women during the single-legged squat. Am J Sports Med. 2003;31(3):449456. PubMed ID: 12750142 doi:10.1177/03635465030310032101

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Ireland ML. Anterior cruciate ligament injury in female athletes: epidemiology. J Athl Train. 1999;34(2):150. PubMed ID: 16558558

  • 5.

    Almeida GP, Silva AP, França FJ, Magalhães MO, Burke TN, Marques AP. Q-angle in patellofemoral pain: relationship with dynamic knee valgus, hip abductor torque, pain and function. Rev Bras Ortop. 2016;51(2):181186. doi:10.1016/j.rbo.2015.05.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Dierks TA, Manal KT, Hamill J, Davis IS. Proximal and distal influences on hip and knee kinematics in runners with patellofemoral pain during a prolonged run. J Orthop Sports Phys Ther. 2008;38(8):448456. PubMed ID: 18678957 doi:10.2519/jospt.2008.2490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Boling MC, Padua DA, Alexander C, Reighton R. Concentric and eccentric torque of the hip musculature in individuals with and without patellofemoral pain. J Athl Train. 2009;44(1):713. PubMed ID: 19180213 doi:10.4085/1062-6050-44.1.7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Arab AM, Nourbakhsh MR. The relationship between hip abductor muscle strength and iliotibial band tightness in individuals with low back pain. Chiropr Osteopat. 2010;18(1):1. doi:10.1186/1746-1340-18-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Ferber R, Noehren B, Hamill J, Davis I. Competitive female runners with a history of iliotibial band syndrome demonstrate atypical hip and knee kinematics. J Orthop Sports Phys Ther. 2010;40(2):5258. PubMed ID: 20118523 doi:10.2519/jospt.2010.3028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Doherty C, Bleakley C, Hertel J, Caulfield B, Ryan J, Delahunt E. Dynamic balance deficits 6 months following first-time acute lateral ankle sprain: a laboratory analysis. J Orthop Sports Phys Ther. 2015;45(8):626633. PubMed ID: 26107043 doi:10.2519/jospt.2015.5653

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Doherty C, Bleakley C, Hertel J, Caulfield B, Ryan J, Delahunt E. Single-leg drop landing motor control strategies following acute ankle sprain injury. Scand J Med Sci Sports. 2015;25(4):525533. PubMed ID: 24975875 doi:10.1111/sms.12282

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Claiborne TL, Armstrong CW, Gandhi V, Pincivero DM. Relationship between hip and knee strength and knee valgus during a single leg squat. J Appl Biomech. 2006;22(1):4150. PubMed ID: 16760566 doi:10.1123/jab.22.1.41

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hirth CJ. Clinical movement analysis to identify muscle imbalances and guide exercise. Athl Ther Today. 2007;12(4):1014. doi:10.1123/att.12.4.10

  • 14.

    Willson JD, Kernozek TW, Arndt RL, Reznichek DA, Scott Straker J. Gluteal muscle activation during running in females with and without patellofemoral pain syndrome. Clin Biomech. 2011;26(7):735740. doi:10.1016/j.clinbiomech.2011.02.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Cashman GE. The effect of weak hip abductors or external rotators on knee valgus kinematics in healthy subjects: a systematic review. J Sport Rehabil. 2012;21(3):273284. PubMed ID: 22894982 doi:10.1123/jsr.21.3.273

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Chaudhari AMW, McKenzie CS, Pan X, Onate JA. Lumbopelvic control and days missed because of injury in professional baseball pitchers. Am J Sports Med. 2014;42(11):27342740. PubMed ID: 25159541 doi:10.1177/0363546514545861

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Willson JD, Dougherty CP, Ireland ML, Davis IM. Core stability and its relationship to lower extremity function and injury. J Am Acad Orthop Surg. 2005;13(5):316325. PubMed ID: 16148357 doi:10.5435/00124635-200509000-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Neumann DA. Kinesiology of the hip: a focus on muscular actions. J Orthop Sports Phys Ther. 2010;40(2):8294. PubMed ID: 20118525 doi:10.2519/jospt.2010.3025

  • 19.

    Distefano LJ, Blackburn JT, Marshall SW, Padua DA. Gluteal muscle activation during common therapeutic exercises. J Orthop Sports Phys Ther. 2009;39(7):532540. PubMed ID: 19574661 doi:10.2519/jospt.2009.2796

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Geiser CF, O’Connor KM, Earl JE. Effects of isolated hip abductor fatigue on frontal plane knee mechanics. Med Sci Sports Exerc. 2010;42(3):535545. PubMed ID: 19952814 doi:10.1249/MSS.0b013e3181b7b227

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Castermans T, Duvinage M, Cheron G, Dutoit T. Towards effective non-invasive brain–computer interfaces dedicated to gait rehabilitation systems. Brain Sci. 2013;4(1):148. PubMed ID: 24961699 doi:10.3390/brainsci4010001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Fish DJ, Nielsen JCP. Clinical assessment of human gait. J Prosthet Orthot. 1993;5(2):2736. doi:10.1097/00008526-199304000-00005

  • 23.

    Kadaba MP, Ramakrishnan HK, Wootten ME. Measurement of lower extremity kinematics during level walking. J Orthop Res. 1990;8(3):383392. PubMed ID: 2324857 doi:10.1002/jor.1100080310

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Borghese NA, Bianchi L, Lacquaniti F. Kinematic determinants of human locomotion. J Physiol. 1996;494(pt 3):863879. doi:10.1113/jphysiol.1996.sp021539

  • 25.

    Gottschalk F, Kourosh S, Leveau B. The functional anatomy of tensor fasciae latae and gluteus medius and minimus. J Anat. 1989;166:179. PubMed ID: 2621137

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Neptune RR, McGowan CP. Muscle contributions to frontal plane angular momentum during walking. J Biomech. 2016;49(13):29752981. PubMed ID: 27522538 doi:10.1016/j.jbiomech.2016.07.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Homan KJ, Norcross MF, Goerger BM, Prentice WE, Blackburn JT. The influence of hip strength on gluteal activity and lower extremity kinematics. J Electromyogr Kinesiol. 2013;23(2):411415. PubMed ID: 23246034 doi:10.1016/j.jelekin.2012.11.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Semciw AI, Neate R, Pizzari T. A comparison of surface and fine wire EMG recordings of gluteus medius during selected maximum isometric voluntary contractions of the hip. J Electromyogr Kinesiol. 2014;24(6):835840. PubMed ID: 25245248 doi:10.1016/j.jelekin.2014.08.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    De Luca CJ, Merletti R. Surface myoelectric signal cross-talk among muscles of the leg. Electroencephalogr Clin Neurophysiol. 1988;69:568575. PubMed ID: 2453334 doi:10.1016/0013-4694(88)90169-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Dieterich AV, Pickard CM, Deshon LE, et al. M-mode ultrasound used to detect the onset of deep muscle activity. J Electromyogr Kinesiol. 2015;25(2):224231. PubMed ID: 25636500 doi:10.1016/j.jelekin.2014.12.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Mangum LC, Sutherlin MA, Saliba SA, Hart JM. Reliability of ultrasound imaging measures of transverse abdominis and lumbar multifidus in various positions. PM R. 2016;8(4):340347. doi:10.1016/j.pmrj.2015.09.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Koppenhaver SL, Hebert JJ, Fritz JM, Parent EC, Teyhen DS, Magel JS. Reliability of rehabilitative ultrasound imaging of the transversus abdominis and lumbar multifidus muscles. Arch Phys Med Rehabil. 2009;90(1):8794. PubMed ID: 19154834 doi:10.1016/j.apmr.2008.06.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Whittaker JL, Emery CA. Sonographic measures of the gluteus medius, gluteus minimus, and vastus medialis muscles. J Orthop Sports Phys Ther. 2014;44(8):627632. PubMed ID: 25029916 doi:10.2519/jospt.2014.5315

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Padua DA, Bell DR, Clark MA. Neuromuscular characteristics of individuals displaying excessive medial knee displacement. J Athl Train. 2012;47(5):525536. PubMed ID: 23068590 doi:10.4085/1062-6050-47.5.10

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Bell DR, Padua DA, Clark MA. Muscle strength and flexibility characteristics of people displaying excessive medial knee displacement. Arch Phys Med Rehabil. 2008;89(7):13231328. PubMed ID: 18586134 doi:10.1016/j.apmr.2007.11.048

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Livengood AL, DiMattia MA, Uhl TL. “Dynamic Trendelenburg”: single-leg squat test for gluteus medius strength. Athl Ther Today. 2004;9(1):2425. doi:10.1123/att.9.1.24

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Dieterich A, Petzke F, Pickard C, Davey P, Falla D. Differentiation of gluteus medius and minimus activity in weight bearing and non-weight bearing exercises by M-mode ultrasound imaging. Man Ther. 2015;20(5):715722. PubMed ID: 25697631 doi:10.1016/j.math.2015.01.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Ophir K, Shechter S, DuBose TJ, Waldroup LD. AIUM technical bulletin. Transducer manipulation. American Institute of Ultrasound in Medicine. J Ultrasound Med. 1999;18(2):169175. doi:10.7863/jum.1999.18.2.169

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Matsas A, Taylor N, McBurney H. Knee joint kinematics from familiarised treadmill walking can be generalised to overground walking in young unimpaired subjects. Gait Posture. 2000;11(1):4653. PubMed ID: 10664485 doi:10.1016/S0966-6362(99)00048-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Teyhen DS, Miltenberger CE, Deiters HM, et al. The use of ultrasound imaging of the abdominal drawing-in maneuver in subjects with low back pain. J Orthop Sports Phys Ther. 2005;35(6):346355. PubMed ID: 16001906 doi:10.2519/jospt.2005.35.6.346

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Donovan L, Feger MA. Relationship between ankle frontal plane kinematics during different functional tasks. Gait Posture. 2017;54:214220. PubMed ID: 28351741 doi:10.1016/j.gaitpost.2017.03.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Chinn L, Dicharry J, Hertel J. Ankle kinematics of individuals with chronic ankle instability while walking and jogging on a treadmill in shoes. Phys Ther Sport. 2013;14(4):232239. PubMed ID: 23623243 doi:10.1016/j.ptsp.2012.10.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Cross R. Standing, walking, running, and jumping on a force plate. Am J Phys. 1999;67(4):304309. doi:10.1119/1.19253

  • 44.

    Crofts G, Angin S, Mickle KJ, Hill S, Nester CJ. Reliability of ultrasound for measurement of selected foot structures. Gait Posture. 2014;39(1):3539. PubMed ID: 23791782 doi:10.1016/j.gaitpost.2013.05.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Mickle KJ, Nester CJ, Crofts G, Steele JR. Reliability of ultrasound to measure morphology of the toe flexor muscles. J Foot Ankle Res. 2013;6(1):12. PubMed ID: 23557252 doi:10.1186/1757-1146-6-12

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Hu H, Meijer OG, Hodges PW, et al. Control of the lateral abdominal muscles during walking. Hum Mov Sci. 2012;31(4):880896. PubMed ID: 22119422 doi:10.1016/j.humov.2011.09.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Kim D, Unger J, Lanovaz JL, Oates AR. The relationship of anticipatory gluteus medius activity to pelvic and knee stability in the transition to single-leg stance. PM R. 2016;8(2):138144. doi:10.1016/j.pmrj.2015.06.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Bergmark A. Stability of the lumbar spine: a study in mechanical engineering. Acta Orthop Scand. 1989;60(suppl 230):154. doi:10.3109/17453678909154177

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Ivanenko YP, Poppele RE, Lacquaniti F. Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol. 2004;556(1):267282. doi:10.1113/jphysiol.2003.057174

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Hewett TE. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492501. PubMed ID: 15722287 doi:10.1177/0363546504269591

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Bittencourt NFN, Ocarino JM, Mendonça LD, Hewett TE, Fonseca ST. Foot and hip contributions to high frontal plane knee projection angle in athletes: a classification and regression tree approach. J Orthop Sports Phys Ther. 2012;42(12):9961004. PubMed ID: 22990391 doi:10.2519/jospt.2012.4041

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Moore JM, Mulloy FE, Bridle C, Mullineaux DR. Leg dominance effects on knee kinematics in unilateral and bilateral squats. Paper presented at: 34th ISBS-Conference of Biomechanics in Sport; 2016. https://ojs.ub.uni-konstanz.de/cpa/article/view/7046. Accessed May 16, 2017.

    • Export Citation
  • 54.

    Carey TS, Crompton RH. The metabolic costs of ‘bent-hip, bent-knee’ walking in humans. J Hum Evol. 2005;48(1):2544. PubMed ID: 15656935 doi:10.1016/j.jhevol.2004.10.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Bergmann G, Graichen F, Rohlmann A, eds. Implantable Telemetry in Orthopaedics: Workshop: Papers. Berlin, Germany: Freie Universität Berlin; 1990:264.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 354 260 31
Full Text Views 24 17 0
PDF Downloads 15 12 0