Crossover Effects of Unilateral Static Stretching and Foam Rolling on Contralateral Hamstring Flexibility and Strength

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Static stretching (SS) and self-administered foam rolling (SAFR) are both effective techniques often used in rehabilitation settings to improve one’s range of motion (ROM). However, their effects on nonintervened contralateral limb’s performance remain equivocal. Objective: To examine the acute effects of unilateral hamstring’s SS and SAFR on the contralateral hip-flexion passive ROM and the strength performance. Design: Randomized crossover trial. Setting: Controlled laboratory. Participants: A total of 23 healthy young adults (13 males and 10 females) participated in this investigation. Interventions: Ten sets of 30-second SS or SAFR were performed on the participants’ dominant hamstring muscles. Main Outcome Measures: Before (pre) and after (post) the interventions, the contralateral hip-flexion passive ROM, the isometric strength of the contralateral hamstrings, and surface electromyography amplitude were measured. Separate 2-way (time × intervention) repeated measures analyses of variance were used to examine the changes in the dependent variables. Results: Both interventions significantly increased the contralateral hip-flexion passive ROM. In addition, the post-ROM value was significantly greater (P = .03) for the SS (mean ± SE = 73.5° ± 4.7°) than that for the SAFR (mean ± SE = 70.3° ± 4.5°). There were also main effects for time (P = .03) and intervention (P = .02) for the contralateral hamstring strength. However, no significant interaction or main effects were found for the normalized electromyography amplitude of the knee flexor muscles. Conclusions: The increased contralateral hip-flexion passive ROM following both interventions was likely due to the enhanced stretch tolerance. However, the differential strength performance responses might be due to different neural mechanisms, which are proposed and discussed.

Killen is with the Department of Health Related Professions, University of Mississippi Medical Center, Jackson, MS, USA. Zelizney is with the Nicole Wertheim College of Nursing & Health Sciences, Florida International University, Miami, FL, USA. Ye is with the Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, University, MS, USA.

Ye (xye1@olemiss.edu) is corresponding author.
  • 1.

    Behm DG, Blazevich AJ, Kay AD, McHugh M. Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review. Appl Physiol Nutr Metab. 2016;41(1):1–11. PubMed ID: 26642915 doi:10.1139/apnm-2015-0235

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    MacDonald GZ, Penney MD, Mullaley ME, et al. An acute bout of self-myofascial release increases range of motion without a subsequent decrease in muscle activation or force. J Strength Cond Res. 2013;27(3):812–821. PubMed ID: 22580977 doi:10.1519/JSC.0b013e31825c2bc1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Avela J, Kyrolainen H, Komi PV. Altered reflex sensitivity after repeated and prolonged passive muscle stretching. J Appl Physiol. 1999;86(4):1283–1291. PubMed ID: 10194214 doi:10.1152/jappl.1999.86.4.1283

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Ye X, Beck TW, Wages NP. Influence of prolonged static stretching on motor unit firing properties. Muscle Nerve. 2016;53(5):808–817. PubMed ID: 26378724 doi:10.1002/mus.24913

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Fowles JR, Sale DG, MacDougall JD. Reduced strength after passive stretch of the human plantarflexors. J Appl Physiol. 2000;89(3):1179–1188. PubMed ID: 10956367 doi:10.1152/jappl.2000.89.3.1179

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Trajano GS, Nosaka K, Blazevich AJ. Neurophysiological mechanisms underpinning stretch-induced force loss. Sports Med. 2017;47(8):1531–1541. PubMed ID: 28120238 doi:10.1007/s40279-017-0682-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Kay AD, Blazevich AJ. Effect of acute static stretch on maximal muscle performance: a systematic review. Med Sci Sports Exerc. 2012;44(1):154–164. PubMed ID: 21659901 doi:10.1249/MSS.0b013e318225cb27

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Behm DG, Chaouachi A. A review of the acute effects of static and dynamic stretching on performance. Eur J Appl Physiol. 2011;111(11):2633–2651. PubMed ID: 21373870 doi:10.1007/s00421-011-1879-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Behara B, Jacobson BH. Acute effects of deep tissue foam rolling and dynamic stretching on muscular strength, power, and flexibility in division I linemen. J Strength Cond Res. 2017;31(4):888–892. PubMed ID: 26121431 doi:10.1519/JSC.0000000000001051

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Su H, Chang NJ, Wu WL, Guo LY, Chu IH. Acute effects of foam rolling, static stretching, and dynamic stretching during warm-ups on muscular flexibility and strength in young adults. J Sport Rehabil. 2017;26(6)469–477. PubMed ID: 27736289 doi:10.1123/jsr.2016-0102

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Halperin I, Aboodarda SJ, Button DC, Andersen LL, Behm DG. Roller massager improves range of motion of plantar flexor muscles without subsequent decreases in force parameters. Int J Sports Phys Ther. 2014;9(1):92–102. PubMed ID: 24567860

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Sullivan KM, Silvey DB, Button DC, Behm DG. Roller-massager application to the hamstrings increases sit-and-reach range of motion within five to ten seconds without performance impairments. Int J Sports Phys Ther. 2013;8(3):228–236. PubMed ID: 23772339

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Aboodarda SJ, Spence AJ, Button DC. Pain pressure threshold of a muscle tender spot increases following local and non-local rolling massage. BMC Musculoskelet Disord. 2015;16(1):265. PubMed ID: 26416265 doi:10.1186/s12891-015-0729-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Macdonald GZ, Button DC, Drinkwater EJ, Behm DG. Foam rolling as a recovery tool after an intense bout of physical activity. Med Sci Sports Exerc. 2014;46(1):131–142. PubMed ID: 24343353 doi:10.1249/MSS.0b013e3182a123db

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Cavanaugh MT, Doweling A, Young JD, et al. An acute session of roller massage prolongs voluntary torque development and diminishes evoked pain. Eur J Appl Physiol. 2017;117(1):109–117. PubMed ID: 27853885 doi:10.1007/s00421-016-3503-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Okamoto T, Masuhara M, Ikuta K. Acute effects of self-myofascial release using a foam roller on arterial function. J Strength Cond Res. 2014;28(1):69–73. PubMed ID: 23575360 doi:10.1519/JSC.0b013e31829480f5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Weerapong P, Hume PA, Kolt GS. The mechanisms of massage and effects on performance, muscle recovery and injury prevention. Sports Med. 2005;35(3):235–256. PubMed ID: 15730338 doi:10.2165/00007256-200535030-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Halperin I, Chapman DW, Behm DG. Non-local muscle fatigue: effects and possible mechanisms. Eur J Appl Physiol. 2015;115(10):2031–2048. PubMed ID: 26330274 doi:10.1007/s00421-015-3249-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Chaouachi A, Padulo J, Kasmi S, Othmen AB, Chatra M, Behm DG. Unilateral static and dynamic hamstrings stretching increases contralateral hip flexion range of motion. Clin Physiol Funct Imaging. 2015;37(1):23–29. PubMed ID: 26017182 doi:10.1111/cpf.12263

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Behm DG, Cavanaugh T, Quigley P, Reid JC, Nardi PS, Marchetti PH. Acute bouts of upper and lower body static and dynamic stretching increase non-local joint range of motion. Eur J Appl Physiol. 2016;116(1):241–249. PubMed ID: 26410819 doi:10.1007/s00421-015-3270-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Kelly S, Beardsley C. Specific and cross-over effects of foam rolling on ankle dorsiflexion range of motion. Int J Sports Phys Ther. 2016;11(4):544–551. PubMed ID: 27525179

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    da Silva JJ, Behm DG, Gomes WA, et al. Unilateral plantar flexors static-stretching effects on ipsilateral and contralateral jump measures. J Sports Sci Med. 2015;14(2):315–321. PubMed ID: 25983580

    • Search Google Scholar
    • Export Citation
  • 23.

    Marchetti PH, Silva FH, Soares EG, et al. Upper limb static-stretching protocol decreases maximal concentric jump performance. J Sports Sci Med. 2014;13(4):945–950. PubMed ID: 25435789

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Cramer JT, Housh TJ, Weir JP, Johnson GO, Coburn JW, Beck TW. The acute effects of static stretching on peak torque, mean power output, electromyography, and mechanomyography. Eur J Appl Physiol. 2005;93(5–6):530–539. PubMed ID: 15599756 doi:10.1007/s00421-004-1199-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Cramer JT, Housh TJ, Johnson GO, Miller JM, Coburn JW, Beck TW. Acute effects of static stretching on peak torque in women. J Strength Cond Res. 2004;18(2):236–241. PubMed ID: 15142021

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Jay K, Sundstrup E, Sondergaard SD, et al. Specific and cross over effects of massage for muscle soreness: randomized controlled trial. Int J Sports Phys Ther. 2014;9(1):82–91. PubMed ID: 24567859

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Malliaropoulos N, Papalexandris S, Papalada A, Papacostas E. The role of stretching in rehabilitation of hamstring injuries: 80 athletes follow-up. Med Sci Sports Exerc. 2004;36(5):756–759. PubMed ID: 15126706 doi:10.1249/01.MSS.0000126393.20025.5E

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Mohr AR, Long BC, Goad CL. Effect of foam rolling and static stretching on passive hip-flexion range of motion. J Sport Rehabil. 2014;23(4):296–299. PubMed ID: 24458506 doi:10.1123/JSR.2013-0025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hermens H, Freriks B, Merletti R, et al. SENIAM European Recommendations for SurfaceElectroMyoGraphy: Result of the SENIAM Project. Enschede, The Netherlands: Roessingh Research and Development; 1999.

    • Search Google Scholar
    • Export Citation
  • 30.

    Cohen J. A power primer. Psychol Bull. 1992;112(1):155–159. PubMed ID: 19565683 doi:10.1037/0033-2909.112.1.155

  • 31.

    Lima BN, Lucareli PR, Gomes WA, et al. The acute effects of unilateral ankle plantar flexors static- stretching on postural sway and gastrocnemius muscle activity during single-leg balance tasks. J Sports Sci Med. 2014;13(3):564–570. PubMed ID: 25177183

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Magnusson SP, Simonsen EB, Dyhre-Poulsen P, Aagaard P, Mohr T, Kjaer M. Viscoelastic stress relaxation during static stretch in human skeletal muscle in the absence of EMG activity. Scand J Med Sci Sports. 1996;6(6):323–328. PubMed ID: 9046541 doi:10.1111/j.1600-0838.1996.tb00101.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Magnusson SP, Simonsen EB, Aagaard P, Sorensen H, Kjaer M. A mechanism for altered flexibility in human skeletal muscle. J Physiol. 1996;497(1):291–298. PubMed ID: 8951730 doi:10.1113/jphysiol.1996.sp021768

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Apostolopoulos N, Metsios GS, Flouris AD, Koutedakis Y, Wyon MA. The relevance of stretch intensity and position-a systematic review. Front Psychol. 2015;6:1128. PubMed ID: 26347668 doi:10.3389/fpsyg.2015.01128

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Delwaide PJ, Pepin JL. The influence of contralateral primary afferents on Ia inhibitory interneurones in humans. J Physiol. 1991;439(1):161–179. PubMed ID: 1895236 doi:10.1113/jphysiol.1991.sp018662

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Sigurdsson A, Maixner W. Effects of experimental and clinical noxious counterirritants on pain perception. Pain. 1994;57(3):265–275. PubMed ID: 7936706 doi:10.1016/0304-3959(94)90002-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Cavanaugh MT, Aboodarda SJ, Hodgson DD, Behm DG. Foam rolling of quadriceps decreases biceps femoris activation. J Strength Cond Res. 2017;31(8):2238–2245. PubMed ID: 27642858 doi:10.1519/JSC.0000000000001625

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Sapega AA, Quedenfeld TC, Moyer RA, Butler RA. Biophysical factors in range-of-motion exercise. Phys Sportsmed. 1981;9(12):57–65. PubMed ID: 27452706 doi:10.1080/00913847.1981.11711229

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Portillo-Soto A, Eberman LE, Demchak TJ, Peebles C. Comparison of blood flow changes with soft tissue mobilization and massage therapy. J Altern Complement Med. 2014;20(12):932–936. PubMed ID: 25420037 doi:10.1089/acm.2014.0160

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J. Rate of force development: physiological and methodological considerations. Eur J Appl Physiol. 2016;116(6):1091–1116. PubMed ID: 26941023 doi:10.1007/s00421-016-3346-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 458 458 62
Full Text Views 42 42 1
PDF Downloads 15 15 1