Improvements of Shooting Performance in Adolescent Air Rifle Athletes After 6-Week Balance and Respiration Training Programs

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Several factors, such as balance and respiration training programs, have been identified as contributing to a shooting performance. However, little is known about the benefits of these programs on the shooting records of adolescent air rifle athletes. Objective: The purpose of this study was to investigate whether balance and respiration training can contribute to the shooting performance required for adolescent air rifle shooting athletes. Design: Case-control study. Setting: Shooting range. Participants: A total of 21 adolescent air rifle athletes were recruited from the local school community and assigned to an experimental (n = 11; EG) or control (n = 10; CG) group. Intervention: The EG performed respiration and balance training for 30 minutes 3 times a week for 6 weeks, and the CG performed balance training only. Main Outcome Measures: Data were collected on the respiratory function, muscle activity, and shooting record before and after the 6-week intervention. Results: The forced vital capacity (FVC), forced expired volume in 1 second (FEV1), FEV1 as a percentage of FVC, peak expiratory flow, and maximum voluntary ventilation were significantly increased in the EG, and FEV1 as a percentage of FVC was significantly increased in the CG (P < .05). The FVC and peak expiratory flow postintervention were significantly different between the groups (P < .05). The activity of the right internal oblique (IO) and left IO muscles of the FVC were significantly different in the EG (P < .05). Within-group changes in right external oblique, right IO, and left IO of the maximum voluntary ventilation were significantly increased in the EG (P < .05). The right IO and left IO activity improved more significantly in the EG than CG (P < .05). There was no difference between the groups with respect to the shooting records. Conclusions: The clinical significance of this study is the balance and respiration training affected the respiration function capacity and muscle activity, but did not affect the shooting record. Nevertheless, these training are a potential approach method to improve athletes’ shooting record.

Park is with the Department of Rehabilitation Medicine, Busan St. Mary’s Hospital, Namgu, Busan, South Korea. D-W. Kim and T-H. Kim are with the Department of Physical Therapy, College of Rehabilitation Science, Daegu University, Gyeongsan-si, Gyeongsangbuk-do, South Korea.

Park (phk8947@naver.com) is corresponding author.
  • 1.

    International Shooting Sport Federation official statutes rules and regulations. 2013. http://www.issf-sports.org/documents/rules/2013/

    • Export Citation
  • 2.

    Ball KA, Best RJ, Wrigley TV. Body sway, aim point fluctuation and performance in rifle shooters: inter- and intra-individual analysis. J Sports Sci. 2003;21(7):559–566. PubMed ID: 12848390 doi:10.1080/0264041031000101881

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Konttinen N, Lyytinen H, Viitasalo J. Rifle-balancing in precision shooting: behavioral aspects and psychophysiological implication. Scand J Med Sci Sports. 1998;8(2):78–83. PubMed ID: 9564711 doi:10.1111/j.1600-0838.1998.tb00172.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Mononen K, Konttinen N, Viitasalo J, Era P. Relationships between postural balance, rifle stability and shooting accuracy among novice rifle shooters. Scand J Med Sci Sports. 2007;17(2):180–185. PubMed ID: 17394480 doi:10.1111/j.1600-0838.2006.00549.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Viitasalo J, Era P, Konttinen N, et al. The posture steadiness of running target shooters of different skill levels. Kinesiology. 1999;31:11.

    • Search Google Scholar
    • Export Citation
  • 6.

    Aalto H, Pyykko I, Ilmarinen R, Kahkonen E, Starck J. Postural stability in shooters. ORL J Otorhinolaryngol Relat Spec. 1990;52(4):232–238. PubMed ID: 2392286 doi:10.1159/000276141

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Mon D, Zakynthinaki MS, Cordente CA, Monroy Anton A, Lopez Jimenez D. Validation of a dumbbell body sway test in Olympic air pistol shooting. PLoS ONE. 2014;9(4):96106. PubMed ID: 24756067 doi:10.1371/journal.pone.0096106

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Era P, Konttinen N, Mehto P, Saarela P, Lyytinen H. Postural stability and skilled performance–a study on top-level and naive rifle shooters. J Biomech. 1996;29(3):301–306. PubMed ID: 8850636 doi:10.1016/0021-9290(95)00066-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Ihalainen S, Kuitunen S, Mononen K, Linnamo V. Determinants of elite-level air rifle shooting performance. Scand J Med Sci Sports. 2016;26(3):266–274. PubMed ID: 25850700 doi:10.1111/sms.12440

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bouisset S, Do MC. Posture, dynamic stability, and voluntary movement. Neurophysiol Clin. 2008;38(6):345–362. PubMed ID: 19026956 doi:10.1016/j.neucli.2008.10.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Behm D, Colado JC. The effectiveness of resistance training using unstable surfaces and devices for rehabilitation. Int J Sports Phys Ther. 2012;7(2):226–241. PubMed ID: 22530196

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Horak FB, Nashner LM. Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol. 1986;55(6):1369–1381. PubMed ID: 3734861 doi:10.1152/jn.1986.55.6.1369

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Cech DJ, Martin ST. Functional Movement Development Across the Lifespan. Philadelphia, PA: WB Saunders; 1995.

  • 14.

    David P, Laval D, Terrien J, Petitjean M. Postural control and ventilatory drive during voluntary hyperventilation and carbon dioxide rebreathing. Eur J Appl Physiol. 2012;112(1):145–154. PubMed ID: 21505845 doi:10.1007/s00421-011-1954-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hodges P, Gurfinkel V, Brumagne S, Smith T, Cordo P. Coexistence of stability and mobility in postural control: evidence from postural compensation for respiration. Exp Brain Res. 2002;144(3):293–302. PubMed ID: 12021811 doi:10.1007/s00221-002-1040-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    De Troyer A, Loring SH. Action of the respiratory muscles. In: Macklem PT, Mead J, ed. Handbook of Physiology: The Respiratory System. Bethesda, MD: American Physiological Society; 1986:443–461.

    • Search Google Scholar
    • Export Citation
  • 17.

    Abraham KA, Feingold H, Fuller DD, Jenkins M, Mateika JH, Fregosi RF. Respiratory-related activation of human abdominal muscles during exercise. J Physiol. 2002;541(pt 2):653–663. PubMed ID: 12042369 doi:10.1113/jphysiol.2001.013462

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Campbell E, Green J. The behaviour of the abdominal muscles and the intra-abdominal pressure during quiet breathing and increased pulmonary ventilation; a study in man. J Physiol. 1955;127(2):423–426. PubMed ID: 14354683 doi:10.1113/jphysiol.1955.sp005268

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hodges P, Saunders S. Coordination of the respiratory and locomotor activities of the abdominal muscles during walking in humans. Proceedings of International Union of Physiological Sciences; 2001.

    • Export Citation
  • 20.

    Saunders SW, Rath D, Hodges PW. Postural and respiratory activation of the trunk muscles changes with mode and speed of locomotion. Gait Posture. 2004;20(3):280–290. PubMed ID: 15531175 doi:10.1016/j.gaitpost.2003.10.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    HajGhanbari B, Yamabayashi C, Buna TR, et al. Effects of respiratory muscle training on performance in athletes: a systematic review with meta-analyses. J Strength Cond Res, 2013;27(6):1643–1663. PubMed ID: 22836606 doi:10.1519/JSC.0b013e318269f73f

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Kilding AE, Brown S, McConnell AK. Inspiratory muscle training improves 100 and 200 m swimming performance. Eur J Appl Physiol. 2010;108(3):505–511. PubMed ID: 19841931 doi:10.1007/s00421-009-1228-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Wylegala JA, Pendergast DR, Gosselin LE, Warkander DE, Lundgren CE. Respiratory muscle training improves swimming endurance in divers. Eur J Appl Physiol. 2007;99(4):393–404. PubMed ID: 17165052 doi:10.1007/s00421-006-0359-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Verges S, Lenherr O, Haner AC, Schulz C, Spengler CM. Increased fatigue resistance of respiratory muscles during exercise after respiratory muscle endurance training. Am J Physiol Regul Integr Comp Physiol. 2007;292(3):R1246–1253. PubMed ID: 17068160 doi:10.1152/ajpregu.00409.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Verges S, Renggli AS, Notter DA, Spengler CM. Effects of different respiratory muscle training regimes on fatigue-related variables during volitional hyperpnoea. Respir Physiol Neurobiol. 2009;169(3):282–290. PubMed ID: 19761874 doi:10.1016/j.resp.2009.09.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Witt JD, Guenette JA, Rupert JL, McKenzie DC, Sheel AW. Inspiratory muscle training attenuates the human respiratory muscle metaboreflex. J Physiol. 2007;584(3):1019–1028. PubMed ID: 17855758 doi:10.1113/jphysiol.2007.140855

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Cimadoro G, Paizis C, Alberti G, Babault N. Effects of different unstable supports on EMG activity and balance. Neurosci Lett. 2013;548:228–232. PubMed ID: 23701860 doi:10.1016/j.neulet.2013.05.025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Gosselink R. Breathing techniques in patients with Chronic Obstructive Pulmonary Disease (COPD). Chron Respir Dis. 2004;1(3):163–172. PubMed ID: 16281658 doi:10.1191/1479972304cd020rs

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Dean E, Frownfelter D. Cardiovascular and Pulmonary Physical Therapy Evidence and Practice. 4th ed. St. Louis, MO: Mosby Elsevier; 2006.

    • Search Google Scholar
    • Export Citation
  • 30.

    Kendall FP, McCreary EK, Provance PG, Rodgers MM, Romani WA. Muscles: Testing and Function with Posture and Pain. Philadelphia: Lippincott Williams & Wilkins; 2005.

    • Search Google Scholar
    • Export Citation
  • 31.

    Cram JR, Kasman GS, Holtz J. Introduction to Surface Electromyography. Gaithersburg, MD: Aspen Publishers; 1998.

  • 32.

    Frank C, Kobesova A, Kolar P. Dynamic neuromuscular stabilization & sports rehabilitation. Int J Sports Phys Ther. 2013;8(1):62–73. PubMed ID: 23439921

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hodges PW, Gandevia SC. Activation of the human diaphragm during a repetitive postural task. J Physiol. 2000;522(Pt 1):165–175. PubMed ID: 10618161 doi:10.1111/j.1469-7793.2000.t01-1-00165.xm

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    David P, Terrien J, Petitjean M. Postural- and respiratory-related activities of abdominal muscles during post-exercise hyperventilation. Gait Posture. 2015;41(4):899–904. PubMed ID: 25842043 doi:10.1016/j.gaitpost.2015.03.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Sapsford RR, Hodges PW. Contraction of the pelvic floor muscles during abdominal maneuvers. Arch Phys Med Rehabil. 2001;82(8):1081–1088. PubMed ID: 11494188 doi:10.1053/apmr.2001.24297

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Sapsford RR, Hodges PW. The effect of abdominal and pelvic floor muscle activation on urine flow in women. Int Urogynecol J. 2012;23(9):1225–1230. PubMed ID: 22278713 doi:10.1007/s00192-011-1654-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Akuthota V, Nadler SF. Core strengthening. Arch Phys Med Rehabil. 2004;85(3 suppl 1):86–92. PubMed ID: 15034861 doi:10.1053/j.apmr.2003.12.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Freilich RJ, Kirsner RL, Byrne E. Isometric strength and thickness relationships in human quadriceps muscle. Neuromuscul Disord. 1995;5(5):415–422. PubMed ID: 7496175 doi:10.1016/0960-8966(94)00078-N

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Ishida H, Hirose R, Watanabe S. Comparison of changes in the contraction of the lateral abdominal muscles between the abdominal drawing-in maneuver and breathe held at the maximum expiratory level. Man Ther. 2012;17(5):427–431. PubMed ID: 22595657 doi:10.1016/j.math.2012.04.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Ito K, Nonaka K, Ogaya S, Ogi A, Matsunaka C, Horie J. Surface electromyography activity of the rectus abdominis, internal oblique, and external oblique muscles during forced expiration in healthy adults. J Electromyogr Kinesiol. 2016;28:76–81. PubMed ID: 27077819 doi:10.1016/j.jelekin.2016.03.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Sapsford R. Rehabilitation of pelvic floor muscles utilizing trunk stabilization. Man Ther. 2004;9(1):3–12. PubMed ID: 14723856 doi:10.1016/S1356-689X(03)00131-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Neumann P, Gill V. Pelvic floor and abdominal muscle interaction: EMG activity and intra-abdominal pressure. Int Urogynecol J Pelvic Floor Dysfunct. 2002;13(2):125–132. PubMed ID: 12054180 doi:10.1007/s001920200027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Richardson CA, Jull GA. Muscle control-pain control. What exercises would you prescribe? Man Ther. 1995;1(1):2–10. PubMed ID: 11327788 doi:10.1054/math.1995.0243

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Ihalainen S, Linnamo V, Mononen K, Kuitunen S. Relation of elite rifle shooters’ technique-test measures to competition performance. Int J Sports Physiol Perform. 2016;11(5):671–677. PubMed ID: 26559498 doi:10.1123/ijspp.2015-0211

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Day BL, Steiger MJ, Thompson PD, Marsden CD. Effect of vision and stance width on human body motion when standing: implications for afferent control of lateral sway. J Physiol. 1993;469:479–499. PubMed ID: 8271209 doi:10.1113/jphysiol.1993.sp019824

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Doyle RJ, Hsiao-Wecksler ET, Ragan BG, Rosengren KS. Generalizability of center of pressure measures of quiet standing. Gait Posture. 2007;25(2):166–171. PubMed ID: 16624560 doi:10.1016/j.gaitpost.2006.03.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Winter DA, Patla AE, Prince F, Ishac M, Gielo-Perczak K. Stiffness control of balance in quiet standing. J Neurophysiol. 1998;80(3):1211–1221. PubMed ID: 9744933 doi:10.1152/jn.1998.80.3.1211

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 197 197 30
Full Text Views 13 13 0
PDF Downloads 6 6 0