The Effect of Diacutaneous Fibrolysis on Patellar Position Measured Using Ultrasound Scanning in Patients With Patellofemoral Pain Syndrome

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Tightness or lack of flexibility of several muscles of the thigh has been associated with patellofemoral joint pain. A tight iliotibial band can lead to laterally located patella and an abnormal patellar tracking pattern. Diacutaneous fibrolysis (DF) is commonly used to reduce muscle tightness, but no studies have evaluated the effects of this technique in the treatment of patients with patellofemoral pain syndrome. Objective: To assess the effect of DF on patellar position in patients with patellofemoral pain syndrome. Design: A single-group, pretest–posttest clinical trial. Setting: University of Zaragoza. Participants: A total of 46 subjects with patellofemoral pain (20 males, 26 females; age: 27.8 [6.9] y). Intervention: Three sessions of DF. Main Outcome Measures: Patellar position measurement using real-time ultrasound scanning; pain intensity measured with visual analog scale and function measured with the Anterior Knee Pain Scale. Results: The application of 3 sessions of DF significantly increased the patellar position at posttreatment evaluation (P < .001) and at 1-week follow-up (P < .001). There was not a significant difference on patellar position between posttreatment and follow-up measurements (P = .28). There were also a statistically significant decrease in pain and increase in function at posttreatment and at 1-week follow-up measurements (P < .001). Conclusion: This study found that patellar position, pain intensity, and function were significantly improved after 3 sessions of DF and at 1-week follow-up.

The authors are with the Department of Physiatrist and Nursery, Faculty of Heath Sciences, University of Zaragoza, Zaragoza, Spain.

Fanlo-Mazas (pfanlo@unizar.es) is corresponding author.
  • 1.

    van Middelkoop M, van Linschoten R, Berger MY, Koes BW, Bierma-Zeinstra SMA. Knee complaints seen in general practice: active sport participants versus non-sport participants. BMC Musculoskelet Disord. 2008;9:36. doi:10.1186/1471-2474-9-36

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Taunton JE, Ryan MB, Clement DB, McKenzie DC, Lloyd-Smith DR, Zumbo BD. A retrospective case-control analysis of 2002 running injuries. Br J Sports Med. 2002;36(2):95101. doi:10.1136/bjsm.36.2.95

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Powers CM, Bolgla LA, Callaghan MJ, Collins N, Sheehan FT. Patellofemoral pain: proximal, distal, and local factors, 2nd International Research Retreat. J Orthop Sports Phys Ther. 2012;42(6):154. doi:10.2519/jospt.2012.0301

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Merican AM, Amis AA. Iliotibial band tension affects patellofemoral and tibiofemoral kinematics. J Biomech. 2009;42(10):15391546. PubMed ID: 19481211 doi:10.1016/j.jbiomech.2009.03.041

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Kwak SD, Ahmad CS, Gardner TR, et al. Hamstrings and iliotibial band forces affect knee kinematics and contact pattern. J Orthop Res. 2000;18(1):101108. doi:10.1002/jor.1100180115

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Puniello MS. Iliotibial band tightness and medial patellar glide in patients with patellofemoral dysfunction. J Orthop Sports Phys Ther. 1993;17(3):144148. doi:10.2519/jospt.1993.17.3.144

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Witvrouw E, Lysens R, Bellemans J, Cambier D, Vanderstraeten G. Intrinsic risk factors for the development of anterior knee pain in an athletic population. A two-year prospective study. Am J Sports Med. 2000;28(4):480489. PubMed ID: 10921638 doi:10.1177/03635465000280040701

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Hudson Z, Darthuy E. Iliotibial band tightness and patellofemoral pain syndrome: a case-control study. Man Ther. 2009;14(2):147151. PubMed ID: 18313972 doi:10.1016/j.math.2007.12.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Winslow J, Yoder E. Patellofemoral pain in female ballet dancers: correlation with iliotibial band tightness and tibial external rotation. J Orthop Sports Phys Ther. 1995;22(1):1821. doi:10.2519/jospt.1995.22.1.18

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Powers CM, Shellock FG, Pfaff M. Quantification of patellar tracking using kinematic MRI. J Magn Reson Imaging. 1998;8(3):724732. PubMed ID: 9626893 doi:10.1002/jmri.1880080332

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Herrington L. The difference in a clinical measure of patella lateral position between individuals with patellofemoral pain and matched controls. J Orthop Sports Phys Ther. 2008;38(2):5962. doi:10.2519/jospt.2008.2660

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Herrington L, McEwan I, Thom J. Quantification of patella position by ultrasound scanning and its criterion validity. Ultrasound Med Biol. 2006;32(12):18331836. doi:10.1016/j.ultrasmedbio.2006.07.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Herrington L. The effect of patellar taping on patellar position measured using ultrasound scanning. Knee. 2010;17(2):132134. PubMed ID: 19720538 doi:10.1016/j.knee.2009.07.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Kang SY, Choung SD, Park JH, Jeon HS, Kwon OY. The relationship between length of the iliotibial band and patellar position in Asians. Knee. 2014;21(6):11351138. PubMed ID: 25311516 doi:10.1016/j.knee.2014.09.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Herrington L, Pearson S. The applicability of ultrasound imaging in the assessment of dynamic patella tracking: a preliminary investigation. Knee. 2008;15(2):125127. PubMed ID: 18234499 doi:10.1016/j.knee.2007.12.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Herrington L, Law J. The effect of hip adduction angle on patellar position measured using real time ultrasound scanning. Knee. 2012;19(5):709712. PubMed ID: 22306212 doi:10.1016/j.knee.2012.01.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Park JH, Kang SY, Choung S, Jeon HS, Kwon O. Effects of tibial rotation on Ober’s test and patellar tracking. Knee. 2016;23(4):600603. doi:10.1016/j.knee.2015.09.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Crossley K, Bennell K, Green S, McConnell J. A systematic review of physical interventions for patellofemoral pain syndrome. Clin J Sport Med. 2001;11:103110. doi:10.1097/00042752-200104000-00007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Dixit S, DiFiori JP, Burton M, Mines B. Management of patellofemoral pain syndrome. Am Fam Phys. 2007;75(2):194202.

  • 20.

    Collins NJ, Bisset LM, Crossley KM, Vicenzino B. Efficacy of nonsurgical interventions for anterior knee pain: systematic review and meta-analysis of randomized trials. Sports Med. 2012;42(1):3149. doi:10.2165/11594460-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Clijsen R, Fuchs J, Taeymans J. Effectiveness of exercise therapy in treatment of patients with patellofemoral pain syndrome: a systematic review and meta-analysis. Phys Ther. 2014;94(12):16971708. doi:10.2522/ptj.20130310

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Tricás JM, Lucha O, Duby P. Fibrolisis Diacutánea Según El Concepto de Kurt Ekman. Zaragoza, Spain: Asociación Española de Fibrolisis Diacutánea; 2010.

    • Search Google Scholar
    • Export Citation
  • 23.

    Ekman K. Eine neue methode der fibrolyse zur unterstüzung der manuellen therapie. Manuellen Medizin. 1972;10:37.

  • 24.

    Barra ME, López C, Fernández G, Murillo E, Villar E, Raya L. The immediate effects of diacutaneous fibrolysis on pain and mobility in patients suffering from painful shoulder: a randomized placebo-controlled pilot study. Clin Rehabil. 2011;25(4):339348. PubMed ID: 21078700 doi:10.1177/0269215510385480

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Barra López ME, López de Celis C, Fernández Jentsch G, Raya de Cárdenas L, Lucha Lápez MO, Tricás Moreno JM. Effectiveness of diacutaneous fibrolysis for the treatment of subacromial impingement syndrome: a randomised controlled trial. Man Ther. 2013;18(5):418424. PubMed ID: 23523255 doi:10.1016/j.math.2013.02.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Lévénez M, Guissard N, Veszely M, Timmermans B, Duchateau J. Changes in muscle resting tension, architecture and spinal reflex after hook treatment in healthy subjects. Computer Methods Biomech Biomed Engg. 2009;12(suppl 1):171172. doi:10.1080/10255840903091429

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Veszely M, Guissard N, Duchateau J. Contribution à l´étude des effects de la fibrolyse diacutanée sur le tríceps sural. Ann Kinésithér. 2000;27(2):5459.

    • Search Google Scholar
    • Export Citation
  • 28.

    van den Berg S, Busegnie Y, Somasse E, Clément S, Van Geyt B. Effet de la fibrolyse diacutanée sur l’amplitude en flexion dorsale passive de cheville. Kinésithérapie, la Revue. 2017;17(181):1318. doi:10.1016/j.kine.2016.09.033

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Crossley K, Bennell K, Green S, Cowan S, McConnell J. Physical therapy for patellofemoral pain: a randomized, double-blinded, placebo-controlled trial. Am J Sports Med. 2002;30(6):857865. PubMed ID: 12435653 doi:10.1177/03635465020300061701

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Syme G, Rowe P, Martin D, Daly G. Disability in patients with chronic patellofemoral pain syndrome: a randomised controlled trial of VMO selective training versus general quadriceps strengthening. Man Ther. 2009;14(3):252263. PubMed ID: 18436468 doi:10.1016/j.math.2008.02.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Collins N, Crossley K, Beller E, Darnell R, McPoil T, Vicenzino B. Foot orthoses and physiotherapy in the treatment of patellofemoral pain syndrome: randomised clinical trial. Br J Sports Med. 2009;43(3):163168. doi:10.1136/bmj.a1735

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Grelsamer RP, Newton PM, Staron RB. The medial-lateral position of the patella on routine magnetic resonance imaging: when is normal not normal? Arthroscopy. 1998;14(1):2328. PubMed ID: 9486329 doi:10.1016/S0749-8063(98)70116-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Shih YF, Bull AM, McGregor AH, Amis AA. Active patellar tracking measurement: a novel device using ultrasound. Am J Sports Med. 2004;32(5):12091217. PubMed ID: 15262644 doi:10.1177/0363546503262693

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Harrison E, Quinney H, Magee D, Sheppard MS, McQuarrie A. Analysis of outcome measures used in the study of patellofemoral pain syndrome. Physiother Can. 1995;47(4):264272. PubMed ID: 10153395

    • Search Google Scholar
    • Export Citation
  • 35.

    Bennell K, Bartam S, Crossley K, Green S. Outcome measures in patellofemoral pain syndrome: test retest reliability and inter-relationships. Phys Ther Sport. 2000;1(2):3241. doi:10.1054/ptsp.2000.0009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Crossley KM, Bennell KL, Cowan SM, Green S. Analysis of outcome measures for persons with patellofemoral pain: which are reliable and valid? Arch Phys Med Rehabil. 2004;85(5):815822. PubMed ID: 15129407 doi:10.1016/S0003-9993(03)00613-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Kujala UM, Jaakkola LH, Koskinen SK, Taimela S, Hurme M, Nelimarkka O. Scoring of patellofemoral disorders. Arthroscopy. 1993;9(2):159163. PubMed ID: 8461073 doi:10.1016/S0749-8063(05)80366-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Watson CJ, Propps M, Ratner J, Zeigler DL, Horton P, Smith SS. Reliability and responsiveness of the lower extremity functional scale and the anterior knee pain scale in patients with anterior knee pain. J Orthop Sports Phys Ther. 2005;35(3):136146. PubMed ID: 15839307 doi:10.2519/jospt.2005.35.3.136

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Gil-Gámez J, Pecos-Martín D, Kujala UM, et al. Validation and cultural adaptation of “Kujala Score” in Spanish. Knee Surg Sports Traumatol Arthrosc. 2016;24(9):28452853. PubMed ID: 25649731 doi:10.1007/s00167-015-3521-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Eliasziw M, Young SL, Woodbury MG, Fryday-Field K. Statistical methodology for the concurrent assessment of interrater and intrarater reliability: using goniometric measurements as an example. Phys Ther. 1994;74(8):777788. PubMed ID: 8047565 doi:10.1093/ptj/74.8.777

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Fletcher JP, Bandy WD. Intrarater reliability of CROM measurement of cervical spine active range of motion in persons with and without neck pain. J Orthop Sports Phys Ther. 2008;38(10):640645. PubMed ID: 18827326 doi:10.2519/jospt.2008.2680

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Portney LG, Watkins M. Foundations of Clinical Research: Applications to Practice. Upper Saddle River, NJ: Prentice Hall; 2000.

  • 43.

    Herrington L. The effect of corrective taping of the patella on patella position as defined by MRI. Res Sports Med. 2006;14(3):215223. PubMed ID: 16967773 doi:10.1080/15438620600854785

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Somes S, Worrel TW, Corey B, Ingersol C. Effects of patellar taping on patellar position in the open and closed kinetic chain: a preliminary study. J Sport Rehabil. 1997;6:299308. doi:10.1123/jsr.6.4.299

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Dye SF. The pathophysiology of patellofemoral pain: a tissue homeostasis perspective. Clin Orthop Relate Res. 2005;(436):100110. PubMed ID: 15995427 doi:10.1097/01.blo.0000172303.74414.7d

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Collins NJ, Bierma-Zeinstra SM, Crossley KM, van Linschoten RL, Vicenzino B, van Middelkoop M. Prognostic factors for patellofemoral pain: a multicentre observational analysis. Br J Sports Med. 2013;47(4):227233. PubMed ID: 23242955 doi:10.1136/bjsports-2012-091696

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 773 677 50
Full Text Views 18 9 0
PDF Downloads 8 5 0