Lower-Extremity Kinematics During Ankle Inversion Perturbations: A Novel Experimental Protocol That Simulates an Unexpected Lateral Ankle Sprain Mechanism

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Lateral ankle sprains are a common injury in which the mechanics of injury have been extensively studied. However, the anticipatory mechanisms to ankle inversion perturbations are not well understood. Objective: To examine lower-extremity kinematics, including spatial and temporal variables of maximum inversion displacement and maximum inversion velocity, during landings on a tilted surface using a new experimental protocol to replicate a lateral ankle sprain. Setting: Three-dimensional motion analysis laboratory. Participants: A total of 23 healthy adults. Interventions: Participants completed unexpected (UE) and expected (EXP) unilateral landings onto a tilted surface rotated 25° in the frontal plane from a height of 30 cm. Main Outcome Measures: Ankle, knee, and hip kinematics at each discrete time point from 150 ms pre-initial contact (IC) to 150 ms post-IC, in addition to maximum ankle inversion and maximum inversion velocity, were compared between UE and EXP landings. Results: The UE landing produced significantly greater maximum inversion displacement (P < .01) and maximum inversion velocity (P = .02) than the EXP landing. Significantly less ankle inversion and internal rotation were found during pre-IC, whereas during post-IC, significantly greater ankle inversion, ankle internal rotation, knee flexion, and knee abduction were observed for the UE landing (P < .05). In addition, significantly less hip flexion and hip adduction were observed for the UE landing during pre-IC and post-IC (P < .05). Conclusions: Differences in the UE and EXP landings indicate the experimental protocol presented a UE inversion perturbation that approximates the mechanism of a lateral ankle sprain. Furthermore, knowledge of the inversion perturbation elicited a hip-dominant strategy, which may be utilized to assist with ankle joint stabilization during landing to further protect the lateral ankle from injury.

Simpson is with the Department of Movement Sciences and Health, University of West Florida, Pensacola, FL. Stewart, Mosby, Chander, and Knight are with the Department of Kinesiology, Mississippi State University, Mississippi State, MS, USA. Simpson is also with the Department of Exercise Science & Community Health, University of West Florida, Pensacola, FL, USA. Macias is with the Department of Orthopaedic Surgery, Columbus Orthopaedic, Columbus, MS, USA.

Simpson (jsimpson1@uwf.edu) is corresponding author.
  • 1.

    Doherty C, Delahunt E, Caulfield B, Hertel J, Ryan J, Bleakley C. The incidence and prevalence of ankle sprain injury: a systematic review and meta-analysis of prospective epidemiological studies. Sports Med. 2014;44(1):123–140. PubMed ID: 24105612 doi:10.1007/s40279-013-0102-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Fong D, Hong Y, Shima Y, Krosshaug T, Yung P, Chan K. Biomechanics of supination ankle sprain: a case report of an accidental injury event in the laboratory. Am J Sports Med. 2009;37(4):822–827. PubMed ID: 19188559 doi:10.1177/0363546508328102

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Terada M, Gribble PA. Jump landing biomechanics during a laboratory recorded recurrent ankle sprain. Foot Ankle Int. 2015;36(7):842–848. PubMed ID: 25761852 doi:10.1177/1071100715576517

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Dicus JR, Seegmiller JG. Unanticipated ankle inversions are significantly different from anticipated ankle inversions during drop landings: overcoming anticipation bias. J Appl Biomech. 2012;28(2):148–155. PubMed ID: 21908896 doi:10.1123/jab.28.2.148

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Gribble PA, Robinson RH. Alterations in knee kinematics and dynamic stability associated with chronic ankle instability. J Athl Train. 2009;44(4):350–355. PubMed ID: 19593416 doi:10.4085/1062-6050-44.4.350

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    McKay GD, Goldie PA, Payne WR, Oakes BW. Ankle injuries in basketball: injury rate and risk factors. Br J Sports Med. 2001;35(2):103–108. PubMed ID: 11273971 doi:10.1136/bjsm.35.2.103

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Suda EY, Amorim CF, Sacco Ide C. Influence of ankle functional instability on the ankle electromyography during landing after volleyball blocking. J Electromyogr Kinesiol. 2009;19(2):84–93. PubMed ID: 18063386 doi:10.1016/j.jelekin.2007.10.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Kristianslund E, Bahr R, Krosshaug T. Kinematics and kinetics of an accidental lateral ankle sprain. J Biomech. 2011;44(14):2576–2578. PubMed ID: 21824618 doi:10.1016/j.jbiomech.2011.07.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Ha SC, Fong DT, Chan KM. Review of ankle inversion sprain simulators in the biomechanics laboratory. AP-SMART. 2015;2(4):114–121. PubMed ID: 29264250 doi:10.1016/j.asmart.2015.08.002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Sato N, Nunome H, Hopper LS, Ikegami Y. Ankle taping can reduce external ankle joint moments during drop landings on a tilted surface [published online ahead of print September 20, 2017]. Sports Biomech. PubMed ID: 28929927 doi:10.1080/14763141.20171375552

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Knight AC, Weimar WH. Effects of inversion perturbation after step down on the latency of the peroneus longus and peroneus brevis. J Appl Biomech. 2011;27(4):283–290. PubMed ID: 21896957 doi:10.1123/jab.27.4.283

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Knight AC, Weimar WH. Difference in response latency of the peroneus longus between the dominant and nondominant legs. J Sport Rehabil. 2011;20(3):321–332. PubMed ID: 21828384 doi:10.1123/jsr.20.3.321

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Knight AC, Weimar WH. Development of a fulcrum methodology to replicate the lateral ankle sprain mechanism and measure dynamic inversion speed. Sports Biomech. 2012;11(3):402–413. PubMed ID: 23072050 doi:10.1080/14763141.2011.638724

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Knight AC, Weimar WH. Difference in ratio of evertor to invertor activity between the dominant and nondominant legs during simulated lateral ankle sprain. J Sport Rehabil. 2013;22(4):272–278. PubMed ID: 23799832 doi:10.1123/jsr.22.4.272

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Simpson JD, DeBusk H, Hill C, Knight A, Chander H. The role of military footwear and workload on ground reaction forces during a simulated lateral ankle sprain mechanism. Foot. 2018;34:53–57. PubMed ID: 29288908 doi:10.1016/j.foot.2017.11.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Gehring D, Wissler S, Lohrer H, Nauck T, Gollhofer A. Expecting ankle tilts and wearing an ankle brace influence joint control in an imitated ankle sprain mechanism during walking. Gait Posture. 2014;39(3):894–898. PubMed ID: 24365326 doi:10.1016/j.gaitpost.2013.11.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Gutierrez GM, Knight CA, Swanik CB, et al. Examining neuromuscular control during landings on a supinating platform in persons with and without ankle instability. Am J Sports Med. 2012;40(1):193–201. PubMed ID: 21917613 doi:10.1177/0363546511422323

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Niu W, Wang Y, He Y, Fan Y, Zhao Q. Kinematics, kinetics, and electromyogram of ankle during drop landing: a comparison between dominant and non-dominant limb. Hum Mov Sci. 2011;30(3):614–623. PubMed ID: 21439665 doi:10.1016/j.humov.2010.10.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Chander H, Garner JC, Wade C. Heel contact dynamics in alternative footwear during slip events. Int J Ind Ergon. 2015;48:158–166. doi:10.1016/j.ergon.2015.05.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Chander H, Garner JC, Wade C. Slip outcomes in firefighters: a comparison of rubber and leather boots. Occupational Ergon. 2016;13(2):67–77. doi:10.3233/OER-160241

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Chander H, Wade C, Garner JC, Knight AC. Slip initiation in alternative and slip-resistant footwear. Int J Occup Saf Ergon. 2016;23(4):558–569. PubMed ID: 27858517 doi:10.1080/10803548.2016.1262498

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Chander H, Knight AC, Garner JC, et al. Impact of military type footwear and workload on heel contact dynamics during slip events. Int J Ind Ergon. 2018;66:18–25. doi:10.1016/j.ergon.2018.02.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983;105(2):136–144. PubMed ID: 6865355 doi:10.1115/1.3138397

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Gribble P, Robinson R. Differences in spatiotemporal landing variables during a dynamic stability task in subjects with CAI. Scand J Med Sci Sports. 2010;20(1):e63–e71. PubMed ID: 19522752 doi:10.1111/j.1600-0838.2009.00899.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Davis RB, Ounpuu S, Tyburski D, Gage JR. A gait analysis data collection and reduction technique. Hum Mov Sci. 1991;10(5):575–587. doi:10.1016/0167-9457(91)90046-Z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Caulfield B, Crammond T, O’sullivan A, Reynolds S, Ward T. Altered ankle-muscle activation during jump landing in participants with functional instability of the ankle joint. J Sport Rehabil. 2004;13(3):189–200. doi:10.1123/jsr.13.3.189

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Caulfield B, Garrett M. Changes in ground reaction force during jump landing in subjects with functional instability of the ankle joint. Clin Biomech. 2004;19(6):617–621. PubMed ID: 15234486 doi:10.1016/j.clinbiomech.2004.03.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Doherty C, Bleakley C, Hertel J, Caulfield B, Ryan J, Delahunt E. Single-leg drop landing movement strategies in participants with chronic ankle instability compared with lateral ankle sprain ‘copers’. Knee Surg Sports Traumatol Arthrosc. 2016;24(4):1049–1059. PubMed ID: 26572632 doi:10.1007/s00167-015-3852-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Fong D, Ha S, Mok K, Chan C, Chan K. Kinematics analysis of ankle inversion ligamentous sprain injuries in sports: five cases from televised tennis competitions. Am J Sports Med. 2012;40(11):2627–2632. PubMed ID: 22967824 doi:10.1177/0363546512458259

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Cohen J. A power primer. Psychol Bull. 1992;112(1):155–159. PubMed ID: 19565683 doi:10.1037/0033-2909.112.1.155

  • 31.

    Hertel J. Functional anatomy, pathomechanics, and pathophysiology of lateral ankle instability. J Athl Train. 2002;37(4):364–375. PubMed ID: 12937557

  • 32.

    Levin O, Vanwanseele B, Thijsen JR, Helsen WF, Staes FF, Duysens J. Proactive and reactive neuromuscular control in subjects with chronic ankle instability: evidence from a pilot study on landing. Gait Posture. 2015;41(1):106–111. PubMed ID: 25439444 doi:10.1016/j.gaitpost.2014.09.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Gehring D, Wissler S, Mornieux G, Gollhofer A. How to sprain your ankle—a biomechanical case report of an inversion trauma. J Biomech. 2013;46(1):175–178. PubMed ID: 23078945 doi:10.1016/j.jbiomech.2012.09.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Mok KM, Fong DT, Krosshaug T, et al. Kinematics analysis of ankle inversion ligamentous sprain injuries in sports: 2 cases during the 2008 Beijing Olympics. Am J Sports Med. 2011;39(7):1548–1552. PubMed ID: 21460069 doi:10.1177/0363546511399384

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 131 131 14
Full Text Views 17 17 1
PDF Downloads 12 12 0