Activation of Scapular and Lumbopelvic Muscles During Core Exercises Executed on a Whole-Body Wobble Board

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Previous studies highlighted that exercises executed on unstable surfaces can yield important benefits to the function of the core musculature in rehabilitation settings, general conditioning settings, and athletic training when properly introduced within a periodized training schedule. No previous study has analyzed core-stability exercises executed in lying, quadruped, plank, and bridge positions on a whole-body wobble board (WWB) specifically designed to accommodate the exerciser’s entire body and promote whole-body instability. We have designed a WWB allowed to roll in a plane perpendicular to its longitudinal axis to promote proactive and reactive activation of the core muscles with a transverse or diagonal line of action, which provides trunk and pelvic stability with low spine compression forces. Purpose: To determine the effect of the use of this newly designed WWB by assessing differences in core-muscle activity during core-stability exercises performed on the ground, in a stable condition, and on the WWB. Design: Controlled laboratory study. Setting: Research laboratory. Patients or Other Participants: Eighteen participants recruited from fitness centers. Intervention(s): The electromyographic (EMG) activity of lumbopelvic and scapular muscles has been recorded during core-stability exercises executed on the WWB (unstable condition) and on ground (stable condition). Main Outcome Measure(s): Mean and peak EMG activity were compared between stable and unstable condition with paired t tests or Wilcoxon signed-rank tests. Results: Overall, exercises performed on the WWB yielded significantly higher EMG activity in the serratus anterior and anterolateral abdominal muscles compared with the same exercises executed on the ground. Conversely, for the bird dog exercise, lower-back muscle activity was significantly higher on the ground. Conclusions: Compared with the ground, core-stability exercises executed on WWB constitute a simple and effective strategy to increase the activity level of the core muscles that control transverse-plane lumbopelvic and trunk stability, avoiding the use of external overload.

The authors are with the Department of Experimental Medicine, University of Perugia, Perugia, Italy.

Contemori (samuele.contemori@unipg.it) is corresponding author.
  • 1.

    Behm D, Colado JC. The effectiveness of resistance training using unstable surfaces and devices for rehabilitation. Int J Sports Phys Ther. 2012;7(2):226–241. PubMed ID: 22530196

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Behm DG, Colado JC. Instability resistance training across the exercise continuum. Sports Health. 2013;5(6):500–503. PubMed ID: 24427423 doi:10.1177/1941738113477815

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Behm DG, Muehlbauer T, Kibele A, Granacher U. Effects of strength training using unstable surfaces on strength, power and balance performance across the lifespan: a systematic review and meta-analysis. Sports Med. 2015;45(12):1645–1669. PubMed ID: 26359066 doi:10.1007/s40279-015-0384-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Eckardt N. Lower-extremity resistance training on unstable surfaces improves proxies of muscle strength, power and balance in healthy older adults: a randomised control trial. BMC Geriatr. 2016;16(1):191. PubMed ID: 27881086 doi:10.1186/s12877-016-0366-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Nam HC, Cha HG, Kim MK. The effects of exercising on an unstable surface on the gait and balance ability of normal adults. J Phys Ther Sci. 2016;28(7):2102–2104. PubMed ID: 27512275 doi:10.1589/jpts.28.2102

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Zech A, Hübscher M, Vogt L, Banzer W, Hänsel F, Pfeifer K. Balance training for neuromuscular control and performance enhancement: a systematic review. J Athl Train. 2010;45(4):392–403. PubMed ID: 20617915 doi:10.4085/1062-6050-45.4.392

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Zemková E. Instability resistance training for health and performance. J Tradit Complement Med. 2017;7(2):245–250. doi:10.1016/j.jtcme.2016.05.007

  • 8.

    Garber CE, Blissmer B, Deschenes MR, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–1359. PubMed ID: 21694556 doi:10.1249/MSS.0b013e318213fefb

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Clark VM, Burden AM. A 4-week wobble board exercise programme improved muscle onset latency and perceived stability in individuals with a functionally unstable ankle. Phys Ther Sport. 2005;6(4):181–187. doi:10.1016/j.ptsp.2005.08.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Kerkhoffs GM, van den Bekerom M, Elders LA, et al. Diagnosis, treatment and prevention of ankle sprains: an evidence-based clinical guideline. Br J Sports Med. 2012;46(12):854–860. PubMed ID: 22522586 doi:10.1136/bjsports-2011-090490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Petersen W, Rembitzki IV, Koppenburg AG, et al. Treatment of acute ankle ligament injuries: a systematic review. Arch Orthop Trauma Surg. 2013;133(8):1129–1141. PubMed ID: 23712708 doi:10.1007/s00402-013-1742-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Van Rijn RM, van Os AG, Bernsen RM, Luijsterburg PA, Koes BW, Bierma-Zeinstra SM. What is the clinical course of acute ankle sprains? A systematic literature review. Am J Med. 2008;121(4):324–331. PubMed ID: 18374692 doi:10.1016/j.amjmed.2007.11.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Verhagen E, Bay K. Optimising ankle sprain prevention: a critical review and practical appraisal of the literature. Br J Sports Med. 2010;44(15):1082–1088. doi:10.1136/bjsm.2010.076406

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Verhagen E, van der Beek A, Twisk J, Bouter L, Bahr R, van Mechelen W. The effect of a proprioceptive balance board training program for the prevention of ankle sprains: a prospective controlled trial. Am J Sports Med. 2004;32(6):1385–1393. PubMed ID: 15310562 doi:10.1177/0363546503262177

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Wester JU, Jespersen SM, Nielsen KD, Neumann L. Wobble board training after partial sprains of the lateral ligaments of the ankle: a prospective randomized study. J Orthop Sports Phys Ther. 1996;23(5):332–336. PubMed ID: 8728532 doi:10.2519/jospt.1996.23.5.332

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Wortmann MA, Docherty CL. Effect of balance training on postural stability in subjects with chronic ankle instability. J Sport Rehabil. 2013;22(2):143–149. PubMed ID: 23117258 doi:10.1123/jsr.22.2.143

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Behm DG, Drinkwater EJ, Willardson JM,Cowley PM. The use of instability to train the core musculature. Appl Physiol Nutr Metab. 2010;35(1):91–108. PubMed ID: 20130672 doi:10.1139/H09-127

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Behm DG, Drinkwater EJ, Willardson JM, Cowley PM; Canadian Society for Exercise Physiology. Canadian Society for Exercise Physiology position stand: the use of instability to train the core in athletic and nonathletic conditioning. Appl Physiol Nutr Metab. 2010;35(1):109–112. PubMed ID: 20130673 doi:10.1139/H09-128

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Behm DG, Drinkwater EJ, Willardson JM, et al. The role of instability rehabilitative resistance training for core musculature. Strength Cond J. 2011;33(3):72–81. doi:10.1519/SSC.0b013e318213af91

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Behm DG, Leonard AM, Young WB, Bonsey WA, MacKinnon SN. Trunk muscle electromyographic activity with unstable and unilateral exercises. J Strength Cond Res. 2005;19(1):193–201. PubMed ID: 15705034

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Zemková E, Jeleň M, Kováčiková Z, Ollé G, Vilman T, Hamar D. Power outputs in the concentric phase of resistance exercises performed in the interval mode on stable and unstable surfaces. J Strength Cond Res. 2012;26(12):3230–3236. doi:10.1519/JSC.0b013e31824bc197

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Baratta R., Solomonow M, Zhou BH, Letson D, Chuinard R, D’Ambrosia R. Muscular coactivation. The role of the antagonist musculature in maintaining knee stability. Am J Sports Med. 1988;16(2):113–122. PubMed ID: 3377094 doi:10.1177/036354658801600205

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Biscarini A, Contemori S, Busti D, Botti FM, Pettorossi VE. Knee flexion with quadriceps cocontraction: a new therapeutic exercise for the early stage of ACL rehabilitation. J Biomech. 2016;49(16):3855–3860. PubMed ID: 28573973 doi:10.1016/j.jbiomech.2016.10.026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Contemori S, Biscarini A, Botti FM, Busti D, Panichi R, Pettorossi VE. Sensorimotor control of the shoulder in professional volleyball players with isolated infraspinatus muscle atrophy. J Sport Rehabil. 2018;27(4):371–379. PubMed ID: 28605232 doi:10.1123/jsr.2016-0183

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Ehsani F, Arab AM, Jaberzadeh S. The effect of surface instability on the differential activation of muscle activity in low back pain patients as compared to healthy individuals: a systematic review of the literature and meta-analysis. J Back Musculoskelet Rehabil. 2017;30(4):649–662. PubMed ID: 28655122 doi:10.3233/BMR-150361

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Czaprowski D, Afeltowicz A, Gębicka A, et al. Abdominal muscle EMG-activity during bridge exercises on stable and unstable surfaces. Phys Ther Sport. 2014;15(3):162–168. PubMed ID: 24268641 doi:10.1016/j.ptsp.2013.09.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Imai A, Kaneoka K, Okubo Y, et al. Trunk muscle activity during lumbar stabilization exercises on both a stable and unstable surface. J Orthop Sports Phys Ther. 2010;40(6):369–375. PubMed ID: 20511695 doi:10.2519/jospt.2010.3211

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Sternlicht E, Rugg S, Fujii LL, Tomomitsu KF, Seki MM. Electromyographic comparison of a stability ball crunch with a traditional crunch. J Strength Cond Res. 2007;21(2):506–509. PubMed ID: 17530978

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    De Luca CJ, Gilmore LD, Kuznetsov M, Roy SH. Filtering the surface EMG signal: movement artifact and baseline noise contamination. J Biomech. 2010;43(8):1573–1579. PubMed ID: 20206934 doi:10.1016/j.jbiomech.2010.01027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Contemori S, Biscarini A. Isolated infraspinatus atrophy secondary to suprascapular nerve neuropathy results in altered shoulder muscles activity [published online ahead of print January 24, 2018]. J Sport Rehabil. doi:10.1123/jsr.2017-0232

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Biscarini A, Busti D, Calandra A, Contemori S. The “supine bridge” therapeutic exercise: determination of joint torques by means of biomechanical modeling and technologies. J Mech Med Biol. 2017;17(6):1750104. doi:10.1142/S0219519417501044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Biscarini A, Benvenuti P, Botti FM, Brunetti A, Brunetti O, Pettorossi VE. Voluntary enhanced cocontraction of hamstring muscles during open kinetic chain leg extension exercise: its potential unloading effect on the anterior cruciate ligament. Am J Sports Med. 2014;42(9):2103–2112. PubMed ID: 24918112 doi:10.1177/0363546514536137

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Contemori S, Biscarini A. Shoulder position sense in volleyball players with infraspinatus atrophy secondary to suprascapular nerve neuropathy. Scand J Med Sci Sports. 2018;28(1):267–275. PubMed ID: 28370538 doi:10.1111/sms.12888

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988:40.

  • 35.

    Neumann DA. Kinesiology of the Musculoskeletal System. 2nd ed. St Louis, MO: Mosby/Elsevier; 2010:408.

  • 36.

    Panjabi MM. The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J Spinal Disord. 1992;5(4):390–396. PubMed ID: 1490035 doi:10.1097/00002517-199212000-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 241 241 38
Full Text Views 13 13 0
PDF Downloads 9 9 0