Modulation of Cortical Activity by High-Frequency Whole-Body Vibration Exercise: An fNIRS Study

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Whole-body vibration (WBV) has shown many positive effects on the human body in rehabilitation and clinical settings in which vibration has been used to elicit muscle contractions in spastic and paretic muscles. Objective: The purpose of this study was to investigate whether WBV exercise (WBVe) differently modulates the cortical activity associated with motor and prefrontal function based on its frequency. Methods: A total of 18 healthy male adults (mean age: 25.3 [2.4] y) participated in this study and performed WBVe (Galileo Advanced plus; Novotec Medical, Pforzheim, Germany) under 3 different vibration frequency conditions (4-mm amplitude with 10-, 20-, and 27-Hz frequencies) and a control condition (0-mm amplitude with 0-Hz frequency). Each condition consisted of 2 alternating tasks (squatting and standing) every 30 seconds for 5 repetitions. All subjects performed the 4 conditions in a randomized order. Main Outcome Measure: Cortical activation during WBVe was measured by relative changes in oxygenated hemoglobin concentration over the primary motor cortex, premotor cortex, supplementary motor area, and prefrontal and somatosensory cortices using functional near-infrared spectroscopy. Results: Oxygenated hemoglobin concentration was higher during the 27-Hz vibration condition than the control and 10-Hz vibration conditions. Specifically, these changes were pronounced in the bilateral primary motor cortex (P < .05) and right prefrontal cortex (P < .05). In contrast, no significant changes in oxygenated hemoglobin concentration were observed in any of the cortical areas during the 10-Hz vibration condition compared with the control condition. Conclusion: This study provides evidence that the motor network and prefrontal cortical areas of healthy adult males can be activated by 27-Hz WBVe. However, WBVe at lower frequencies did not induce significant changes in cortical activation.

Choi, H.-J. Lee, A. Lee, H.-G. Kim, and Y.-H. Kim are with the Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea. H.-J. Lee and Y.-H. Kim are also with the Department of Health Science and Technology, Department of Medical Device Management and Research (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea. Choi is also with the Center for Sport Science in Daegu, Daegu, Republic of Korea. Shin is with the Department of Rehabilitation Medicine, Pusan National University School of Medicine, Research Institute of Convergence for Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea. D.-S. Choi and H.-J. Lee contributed equally.

Y.-H. Kim (yunkim@skku.edu; yun1225.kim@samsung.com) is corresponding author.
  • 1.

    Delecluse C, Roelants M, Verschueren S. Strength increase after whole-body vibration compared with resistance training. Med Sci Sports Exerc. 2003;35(6):10331041. PubMed ID: 12783053 doi:10.1249/01.MSS.0000069752.96438.B0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Rees SS, Murphy AJ, Watsford ML. Effects of whole body vibration on postural steadiness in an older population. J Sci Med Sport. 2009;12(4):440444. PubMed ID: 18550436 doi:10.1016/j.jsams.2008.02.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Marin PJ, Rhea MR. Effects of vibration training on muscle power: a meta-analysis. J Strength Cond Res. 2010;24(3):871878. PubMed ID: 20145554 doi:10.1519/JSC.0b013e3181c7c6f0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Hazell TJ, Jakobi JM, Kenno KA. The effects of whole-body vibration on upper- and lower-body EMG during static and dynamic contractions. Appl Physiol Nutr Metab. 2007;32(6):11561163. PubMed ID: 18059590 doi:10.1139/H07-116

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Machado A, Garcia-Lopez D, Gonzalez-Gallego J, Garatachea N. Whole-body vibration training increases muscle strength and mass in older women: a randomized-controlled trial. Scand J Med Sci Sports. 2010;20(2):200207. PubMed ID: 19422657 doi:10.1111/j.1600-0838.2009.00919.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Kawanabe K, Kawashima A, Sashimoto I, Takeda T, Sato Y, Iwamoto J. Effect of whole-body vibration exercise and muscle strengthening, balance, and walking exercises on walking ability in the elderly. Keio J Med. 2007;56(1):2833. PubMed ID: 17392595 doi:10.2302/kjm.56.28

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Maikala RV, Bhambhani YN. In vivo lumbar erector spinae oxygenation and blood volume measurements in healthy men during seated whole-body vibration. Exp Physiol. 2006;91(5):853866. PubMed ID: 16740640 doi:10.1113/expphysiol.2006.033696

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Chan KS, Liu CW, Chen TW, Weng MC, Huang MH, Chen CH. Effects of a single session of whole body vibration on ankle plantarflexion spasticity and gait performance in patients with chronic stroke: a randomized controlled trial. Clin Rehabil. 2012;26(12):10871095. PubMed ID: 23035004 doi:10.1177/0269215512446314

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Roelants M, Delecluse C, Verschueren SM. Whole-body-vibration training increases knee-extension strength and speed of movement in older women. J Am Geriatr Soc. 2004;52(6):901908. PubMed ID: 15161453 doi:10.1111/j.1532-5415.2004.52256.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Cardinale M, Bosco C. The use of vibration as an exercise intervention. Exerc Sport Sci Rev. 2003;31(1):37. PubMed ID: 12562163 doi:10.1097/00003677-200301000-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Martin B, Gauthier GM, Roll JP, Hugon M, Harlay F. Effects of whole-body vibrations on standing posture in man. Aviat Space Environ Med. 1980;51(8):778787. PubMed ID: 7417144

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Lai CC, Tu YK, Wang TG, Huang YT, Chien KL. Effects of resistance training, endurance training and whole-body vibration on lean body mass, muscle strength and physical performance in older people: a systematic review and network meta-analysis. Age Ageing. 2018;47(3):367373. PubMed ID: 29471456 doi:10.1093/ageing/afy009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Marin PJ, Rhea MR. Effects of vibration training on muscle strength: a meta-analysis. J Strength Cond Res. 2010;24(2):548556. PubMed ID: 20072044

  • 14.

    Chance B, Leigh JS, Miyake H, et al. Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain. Proc Natl Acad Sci U S A. 1988;85(14):49714975. PubMed ID: 3393526 doi:10.1073/pnas.85.14.4971

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Ide K, Secher NH. Cerebral blood flow and metabolism during exercise. Prog Neurobiol. 2000;61(4):397414. PubMed ID: 10727781 doi:10.1016/S0301-0082(99)00057-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Villringer A, Chance B. Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci. 1997;20(10):435442. PubMed ID: 9347608 doi:10.1016/S0166-2236(97)01132-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Miyai I, Tanabe HC, Sase I, et al. Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. NeuroImage. 2001;14(5):11861192. PubMed ID: 11697950 doi:10.1006/nimg.2001.0905

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Maikala RV, King S, Bhambhani YN. Cerebral oxygenation and blood volume responses to seated whole-body vibration. Eur J Appl Physiol. 2005;95(5–6):447453. PubMed ID: 16177916 doi:10.1007/s00421-005-0013-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Maikala RV, Bhambhani YN. Functional changes in cerebral and paraspinal muscle physiology of healthy women during exposure to whole-body vibration. Accid Anal Prev. 2008;40(3):943953. PubMed ID: 18460362 doi:10.1016/j.aap.2007.10.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Li GF, Wang K, Chen R, Zhao HR, Yang J, Zheng QS. Simulation of the pharmacokinetics of bisoprolol in healthy adults and patients with impaired renal function using whole-body physiologically based pharmacokinetic modeling. Acta Pharmacol Sin. 2012;33(11):13591371. PubMed ID: 23085739 doi:10.1038/aps.2012.103

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Goudarzian M, Ghavi S, Shariat A, Shirvani H, Rahimi M. Effects of whole body vibration training and mental training on mobility, neuromuscular performance, and muscle strength in older men. J Exerc Rehabil. 2017;13(5):573580. PubMed ID: 29114533 doi:10.12965/jer.1735024.512

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Yang X, Wang P, Liu C, He C, Reinhardt JD. The effect of whole body vibration on balance, gait performance and mobility in people with stroke: a systematic review and meta-analysis. Clin Rehabil. 2015;29(7):627638. PubMed ID: 25311142 doi:10.1177/0269215514552829

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Marin PJ, Santos-Lozano A, Santin-Medeiros F, Delecluse C, Garatachea N. A comparison of training intensity between whole-body vibration and conventional squat exercise. J Electromyogr Kinesiol. 2011;21(4):616621. PubMed ID: 21306916 doi:10.1016/j.jelekin.2010.12.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Marin PJ, Santos-Lozano A, Santin-Medeiros F, et al. Whole-body vibration increases upper and lower body muscle activity in older adults: potential use of vibration accessories. J Electromyogr Kinesiol. 2012;22(3):456462. PubMed ID: 22406015 doi:10.1016/j.jelekin.2012.02.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Robbins D, Elwell C, Jimenez A, Goss-Sampson M. Localised muscle tissue oxygenation during dynamic exercise with whole body vibration. J Sports Sci Med. 2012;11(2):346351. PubMed ID: 24149209

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Harada T, Miyai I, Suzuki M, Kubota K. Gait capacity affects cortical activation patterns related to speed control in the elderly. Exp Brain Res. 2009;193(3):445454. PubMed ID: 19030850 doi:10.1007/s00221-008-1643-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Obrig H, Villringer A. Near-infrared spectroscopy in functional activation studies. Can NIRS demonstrate cortical activation? Adv Exp Med Biol. 1997;413:113127. PubMed ID: 9238492

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Narayan SM, Esfahani P, Blood AJ, Sikkens L, Toga AW. Functional increases in cerebral blood volume over somatosensory cortex. J Cereb Blood Flow Metab. 1995;15(5):754765. PubMed ID: 7673370 doi:10.1038/jcbfm.1995.95

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Rittweger J, Mutschelknauss M, Felsenberg D. Acute changes in neuromuscular excitability after exhaustive whole body vibration exercise as compared to exhaustion by squatting exercise. Clin Physiol Funct Imaging. 2003;23(2):8186. PubMed ID: 12641601 doi:10.1046/j.1475-097X.2003.00473.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Ritzmann R, Kramer A, Gollhofer A, Taube W. The effect of whole body vibration on the H-reflex, the stretch reflex, and the short-latency response during hopping. Scand J Med Sci Sports. 2013;23(3):331339. PubMed ID: 23802287 doi:10.1111/j.1600-0838.2011.01388.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Mileva KN, Bowtell JL, Kossev AR. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men. Exp Physiol. 2009;94(1):103116. PubMed ID: 18658234 doi:10.1113/expphysiol.2008.042689

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 463 463 19
Full Text Views 42 42 0
PDF Downloads 24 24 0