Differences of Relative and Absolute Strength of Individuals With Spinal Cord Injury From Able-Bodied Subjects: A Discriminant Analysis

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Strength training is one of the most common interventions employed to increase functional independence during rehabilitation of individuals with spinal cord injury (SCI). However, in the literature, different results have been reported in terms of strength modifications after a SCI compared with a control group (CG). Objective: This study aimed to verify whether discriminant analysis using relative and absolute strength is able to discriminate individuals with different levels of SCI from a CG and to compare strength values of men with different levels of SCI with a CG. Design: Cross-sectional study. Setting: Rehabilitation hospital setting. Participants: A total of 36 individuals with SCI stratified in tetraplegia (TP; C6–C8), high paraplegia (HP; T1–T6), and low paraplegia (LP; T7–L2), and 12 matched control subjects were enrolled in the study. Main Outcome Measures: The subjects performed a maximum strength test of elbow extension/flexion and also shoulder abduction/adduction and flexion/extension in an isokinetic dynamometer. Discriminant analysis was carried out to identify which strength variables would be able to discriminate the TP, HP, or LP groups from the CG. A 1-way analysis of variance was performed to compare peak torque and agonist/antagonist ratio means. Results: Shoulder adduction, followed by elbow extension peak torque, was the best variable for discriminating the TP group from the CG (function coefficients: −0.056 and 0.051, respectively, Wilks Λ = 0.41, P ≤ .05). There were no significant differences between the HP group, LP group, and CG. Conclusions: The strength similarity of the paraplegic groups and the CG should not be extrapolated for activities of daily living or sports. The TP group demonstrated lower peak torque for all movements than the CG.

Ribeiro Neto, Bottaro, and Carregaro are with the College of Physical Education, Universidade de Brasília (UnB), Brasília, Federal District, Brazil. Ribeiro Neto and Gomes Costa are with SARAH Rehabilitation Hospital Network, Brasília, Federal District, Brazil. Tanhoffer is with Metabolism Laboratory, Physiology Department, Universidade Federal do Paraná, Curitiba, Paraná, Brazil. Carregaro is also with the School of Physical Therapy, Universidade de Brasilia (UnB), Campus UnB Ceilândia, Brasília, Federal District, Brazil.

Ribeiro Neto (fredribeironeto@gmail.com) is corresponding author.
  • 1.

    Ferreira VM, Varoto R, Cacho EA, Cliquet A. Relationship between function, strength and electromyography of upper extremities of persons with tetraplegia. Spinal Cord. 2012;50(1):28–32. doi:10.1038/sc.2011.95

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Hicks AL, Martin Ginis KA, Pelletier CA, Ditor DS, Foulon B, Wolfe DL. The effects of exercise training on physical capacity, strength, body composition and functional performance among adults with spinal cord injury: a systematic review. Spinal Cord. 2011;49(11):1103–1127. PubMed ID: 21647163 doi:10.1038/sc.2011.62

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Warburton DE, Eng JJ, Krassioukov A, Sproule S; the SCIRE Research Team. Cardiovascular health and exercise rehabilitation in spinal cord injury. Top Spinal Cord Inj Rehabil. 2007;13(1):98–122. PubMed ID: 22719205 doi:10.1310/sci1301-98

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Cooney MM, Walker JB. Hydraulic resistance exercise benefits cardiovascular fitness of spinal cord injured. Med Sci Sports Exerc. 1986;18(5):522–525. PubMed ID: 3773668 doi:10.1249/00005768-198610000-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Jacobs PL, Nash MS, Rusinowski JW. Circuit training provides cardiorespiratory and strength benefits in persons with paraplegia. Med Sci Sports Exerc. 2001;33(5):711–717. PubMed ID: 11323537 doi:10.1097/00005768-200105000-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Zoeller RF Jr, Riechman SE, Dabayebeh IM, Goss FL, Robertson RJ, Jacobs PL. Relation between muscular strength and cardiorespiratory fitness in people with thoracic-level paraplegia. Arch Phys Med Rehabil. 2005;86(7):1441–1446. PubMed ID: 16003678 doi:10.1016/j.apmr.2004.11.032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Turbanski S, Schmidtbleicher D. Effects of heavy resistance training on strength and power in upper extremities in wheelchair athletes. J Strength Cond Res. 2010;24(1):8–16. PubMed ID: 19996772 doi:10.1519/JSC.0b013e3181bdddda

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Galea MP. Spinal cord injury and physical activity: preservation of the body. Spinal Cord. 2012;50(5):344–351. PubMed ID: 22158253 doi:10.1038/sc.2011.149

  • 9.

    Ribeiro Neto F, Guanais P, Lopes GH, et al. Influence of relative strength on functional independence of patients with spinal cord injury. Arch Phys Med Rehabil. 2017; 98(6):1104–1112. PubMed ID: 27717738 doi:10.1016/j.apmr.2016.08.483

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Powers CM, Newsam CJ, Gronley JK, Fontaine CA, Perry J. Isometric shoulder torque in subjects with spinal cord injury. Arch Phys Med Rehabil. 1994;75(7):761–765. PubMed ID: 8024421

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kotajarvi BR, Basford JR, An KN. Upper-extremity torque production in men with paraplegia who use wheelchairs. Arch Phys Med Rehabil. 2002;83(4):441–446. PubMed ID: 11932843 doi:10.1053/apmr.2002.6685

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Souza AL, Boninger ML, Fitzgerald SG, Shimada SD, Cooper RA, Ambrosio F. Upper limb strength in individuals with spinal cord injury who use manual wheelchairs. J Spinal Cord Med. 2005;28(1):26–32. PubMed ID: 15832901 doi:10.1080/10790268.2005.11753795

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Widman LM, Abresch RT, Styne DM, McDonald CM. Aerobic fitness and upper extremity strength in patients aged 11 to 21 years with spinal cord dysfunction as compared to ideal weight and overweight controls. J Spinal Cord Med. 2007;30(suppl 1):S88–S96. PubMed ID: 17874693 doi:10.1080/10790268.2007.11754611

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Bernard PL, Codine P, Minier J. Isokinetic shoulder rotator muscles in wheelchair athletes. Spinal Cord. 2004;42(4):222–229. PubMed ID: 15060519 doi:10.1038/sj.sc.3101556

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Burnham RS, May L, Nelson E, Steadward R, Reid DC. Shoulder pain in wheelchair athletes. The role of muscle imbalance. Am J Sports Med. 1993;21(2):238–242. PubMed ID: 8465919 doi:10.1177/036354659302100213

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Marôco J. Análise Estatística com o SPSS Statistics. 6th ed. Pero Pinheiro, Portugal: ReportNumber, Lda; 2014.

  • 17.

    Kirshblum SC, Burns SP, Biering-Sorensen F, et al. International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med. 2011;34(6):535–546. PubMed ID: 22330108 doi:10.1179/204577211X13207446293695

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kirshblum SC, Waring W, Biering-Sorensen F, et al. Reference for the 2011 revision of the International Standards for Neurological Classification of Spinal Cord Injury. J Spinal Cord Med. 2011;34(6):547–554. PubMed ID: 22330109 doi:10.1179/107902611X13186000420242

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Ribeiro Neto F, Lopes GH. Body composition modifications in people with chronic spinal cord injury after supervised physical activity. J Spinal Cord Med. 2011;34(6):586–593. PubMed ID: 22330114 doi:10.1179/2045772311Y.0000000038

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Bar-On ZH, Nene AV. Relationship between heart rate and oxygen uptake in thoracic level paraplegics. Paraplegia. 1990;28(2):87–95. PubMed ID: 2235027

  • 21.

    Nash MS, van de Ven I, van Elk N, Johnson BM. Effects of circuit resistance training on fitness attributes and upper-extremity pain in middle-aged men with paraplegia. Arch Phys Med Rehabil. 2007;88(1):70–75. PubMed ID: 17207678 doi:10.1016/j.apmr.2006.10.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Coutinho AC, Neto FR, Perna CE. Determination of normative values for 20 min exercise of wheelchair propulsion by spinal cord injury patients. Spinal Cord. 2013;51(10):755–760. PubMed ID: 24042996 doi:10.1038/sc.2013.89

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Ribeiro Neto F, Lopes GH. Analysis of body composition values in men with different spinal cord injury levels. Fisiot Mov. 2013;26(4):743–752. doi:10.1590/S0103-51502013000400004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Coutinho AC, Neto FR, Beraldo PS. Validity of heart rate indexes to assess wheeling efficiency in patients with spinal cord injuries. Spinal Cord. 2014;52(9):677–682. PubMed ID: 25000953 doi:10.1038/sc.2014.107

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Neto FR, Coutinho AC, Beraldo PS. Reproducibility and responsiveness of heart rate indexes to assess wheeling efficiency in patients with spinal cord injuries. Spinal Cord. 2014;52(9):683–688. PubMed ID: 25000952 doi:10.1038/sc.2014.108

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Janssen TW, Dallmeijer AJ, Veeger DJ, van der Woude LH. Normative values and determinants of physical capacity in individuals with spinal cord injury. J Rehabil Res Dev. 2002;39(1):29–39. PubMed ID: 11930906

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Ambrosio F, Boninger ML, Souza AL, Fitzgerald SG, Koontz AM, Cooper RA. Biomechanics and strength of manual wheelchair users. J Spinal Cord Med. 2005;28(5):407–414. PubMed ID: 16869087 doi:10.1080/10790268.2005.11753840

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Stumbo TA, Merriam S, Nies K, Smith A, Spurgeon D, Weir JP. The effect of hand-grip stabilization on isokinetic torque at the knee. J Strength Cond Res. 2001;15(3):372–377. PubMed ID: 11710668

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Robertson RJ, Goss FL, Rutkowski J, et al. Concurrent validation of the OMNI perceived exertion scale for resistance exercise. Med Sci Sports Exerc. 2003;35(2):333–341. PubMed ID: 12569225 doi:10.1249/01.MSS.0000048831.15016.2A

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Ribeiro Neto F, Costa RRG, Cardoso JR, Brown L, Bottaro M, Carregaro RL. Influence of familiarization on maximum strength testing in male individuals with spinal cord injury. Isokinet Exerc Sci. 2018;26(2):125–132. doi:10.3233/IES-172213

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Pentland WE, Twomey LT. Upper limb function in persons with long term paraplegia and implications for independence: part I. Paraplegia. 1994;32(4):211–218. PubMed ID: 8022630

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    de Groot S, Post MW, Hoekstra T, Valent LJ, Faber WX, van der Woude LH. Trajectories in the course of body mass index after spinal cord injury. Arch Phys Med Rehabil. 2014;95(6):1083–1092. PubMed ID: 24534297 doi:10.1016/j.apmr.2014.01.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Mulroy SJ, Gronley JK, Newsam CJ, Perry J. Electromyographic activity of shoulder muscles during wheelchair propulsion by paraplegic persons. Arch Phys Med Rehabil. 1996;77(2):187–193. PubMed ID: 8607745 doi:10.1016/S0003-9993(96)90166-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Harburn KL, Spaulding SJ. Muscle activity in the spinal cord-injured during wheelchair ambulation. Am J Occup Ther. 1986;40(9):629–636. PubMed ID: 3766686 doi:10.5014/ajot.40.9.629

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Cerquiglini S, Figura F, Marchetti M, Ricci B. Biomechanics of wheelchair propulsion. In: Morecki A, Fiolelus K, Keolzioz K, Wit A, eds. Biomechanics. Warsaw, Poland/Baltimore, MD: University Park Press; 1981:410–419.

    • Search Google Scholar
    • Export Citation
  • 36.

    Perry J, Gronley JK, Newsam CJ, Reyes ML, Mulroy SJ. Electromyographic analysis of the shoulder muscles during depression transfers in subjects with low-level paraplegia. Arch Phys Med Rehabil. 1996;77(4):350–355. PubMed ID: 8607758 doi:10.1016/S0003-9993(96)90083-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Reyes ML, Gronley JK, Newsam CJ, Mulroy SJ, Perry J. Electromyographic analysis of shoulder muscles of men with low-level paraplegia during a weight relief raise. Arch Phys Med Rehabil. 1995;76(5):433–439. PubMed ID: 7741613 doi:10.1016/S0003-9993(95)80572-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    van den Berg-Emons RJ, L’Ortye AA, Buffart LM, et al. Validation of the Physical Activity Scale for individuals with physical disabilities. Arch Phys Med Rehabil. 2011;92(6):923–928. PubMed ID: 21507382 doi:10.1016/j.apmr.2010.12.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Collins EG, Gater D, Kiratli J, Butler J, Hanson K, Langbein WE. Energy cost of physical activities in persons with spinal cord injury. Med Sci Sports Exerc. 2010;42(4):691–700. PubMed ID: 19952846 doi:10.1249/MSS.0b013e3181bb902f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Buchholz AC, Pencharz PB. Energy expenditure in chronic spinal cord injury. Curr Opin Clin Nutr Metab Care. 2004;7(6):635–639. PubMed ID: 15534431 doi:10.1097/00075197-200411000-00008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Slowik JS, McNitt-Gray JL, Requejo PS, Mulroy SJ, Neptune RR. Compensatory strategies during manual wheelchair propulsion in response to weakness in individual muscle groups: a simulation study. Clin Biomech. 2016;33:34–41. PubMed ID: 26945719 doi:10.1016/j.clinbiomech.2016.02.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Haisma JA, Post MW, van der Woude LH, et al. Functional independence and health-related functional status following spinal cord injury: a prospective study of the association with physical capacity. J Rehabil Med. 2008;40(10):812–818. PubMed ID: 19242617 doi:10.2340/16501977-0258

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Rowland JW, Hawryluk GW, Kwon B, Fehlings MG. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus. 2008;25(5):E2. PubMed ID: 18980476 doi:10.3171/FOC.2008.25.11.E2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Amaral GM, Marinho HV, Ocarino JM, Silva PL, de Souza TR, Fonseca ST. Muscular performance characterization in athletes: a new perspective on isokinetic variables. Braz J Phys Ther. 2014;18(6):521–529. PubMed ID: 25590444 doi:10.1590/bjpt-rbf.2014.0047

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 130 130 23
Full Text Views 17 17 2
PDF Downloads 6 6 3