Influence of Foam Rolling Velocity on Knee Range of Motion and Tissue Stiffness: A Randomized, Controlled Crossover Trial

Click name to view affiliation

Jan Wilke
Search for other papers by Jan Wilke in
Current site
Google Scholar
PubMed
Close
,
Philipp Niemeyer
Search for other papers by Philipp Niemeyer in
Current site
Google Scholar
PubMed
Close
,
Daniel Niederer
Search for other papers by Daniel Niederer in
Current site
Google Scholar
PubMed
Close
,
Robert Schleip
Search for other papers by Robert Schleip in
Current site
Google Scholar
PubMed
Close
, and
Winfried Banzer
Search for other papers by Winfried Banzer in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: Foam rolling (FR) increases joint range of motion (RoM), but the optimal training parameters are unknown. Objective: To investigate the effect of FR velocity on RoM and tissue stiffness. Design: Randomized, controlled crossover trial. Setting: University. Participants: A total of 17 healthy, physically active adults (10 females; 25 [2] y). Interventions: (1) Four 45-second high-velocity FR of the anterior thigh (FAST-FR), (2) four 45-second slow-velocity FR of the anterior thigh (SLOW-FR), and (3) inactive control. Outcome Measures: Maximal knee-flexion RoM (ultrasonic movement analysis) and anterior thigh tissue stiffness (semielectronic tissue compliance meter) assessed pre, immediately post (T0), as well as 5 (T5) and 10 (T10) minutes postintervention. Statistical analysis included Friedman tests with adjusted post hoc comparisons (Wilcoxon tests). Results: According to omnibus testing, RoM remained unchanged in all 3 conditions and at all time points (P > .05), while differences were found for tissue stiffness (P < .05). Post hoc tests revealed significant decreases following FAST-FR (T5: −17%, T10: −24%; P < .05) and SLOW-FR (T10: −15%; P < .05). The observed stiffness changes were significant in comparison with control (P < .01), but no difference was found between the 2 FR conditions (P > .05). Conclusions: FR of the anterior thigh decreases myofascial stiffness regardless of velocity. The lack of effects on RoM contrasts findings of recent literature and warrants further investigation.

Wilke, Niemeyer, Niederer, and Banzer are with Department of Sports Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany. Schleip is with Fascia Research Group, Neurosurgical Clinic Guenzburg, Ulm University, Ulm, Germany.

Wilke (wilke@sport.uni-frankfurt.de) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Thompson W. Worldwide survey of fitness trends for 2018: the CREP edition. ACSM’s Health Fitness J. 2017;21:1019. doi:10.1249/FIT.0000000000000341

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Beardsley C, Škarabot J. Effects of self-myofascial release: a systematic review. J Bodyw Mov Ther. 2015;19:747758. PubMed ID: 26592233 doi:10.1016/j.jbmt.2015.08.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Cheatham SW, Kolber MJ, Cain M, Lee M. The effects of self-myofascial release using a foam roller or roller massager on joint range of motion, muscle recovery, and performance: a systematic review. Int J Sports Phys Ther. 2015;10:827838. PubMed ID: 26618062

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Schroeder AN, Best TM. Is self myofascial release an effective preexercise and recovery strategy? A literature review. Curr Sports Med Rep. 2015;14:200208. PubMed ID: 25968853 doi:10.1249/JSR.0000000000000148

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Kalichman L, Ben David C. Effect of self-myofascial release on myofascial pain, muscle flexibility, and strength: a narrative review. J Bodyw Mov Ther. 2017;21:446451. PubMed ID: 28532889 doi:10.1016/j.jbmt.2016.11.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    DeBruyne DM, Dewhurst MM, Fischer KM, Wojtanowski MS, Durall C. Self-mobilization using a foam roller versus a roller massager: which is more effective for increasing hamstrings flexibility? J Sport Rehabil. 2017;26:94100. PubMed ID: 27632826 doi:10.1123/jsr.2015-0035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    MacDonald GZ, Penney MD, Mullaley ME, et al. An acute bout of self-myofascial release increases range of motion without a subsequent decrease in muscle activation or force. J Strength Cond Res. 2013;27:812821. PubMed ID: 22580977 doi:10.1519/JSC.0b013e31825c2bc1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bradbury-Squires DJ, Noftall JC, Sullivan KM, Behm DG, Power KE, Button DC. Roller-massager application to the quadriceps and knee-joint range of motion and neuromuscular efficiency during a lunge. J Athl Train. 2015;50:133140. PubMed ID: 25415414 doi:10.4085/1062-6050-49.5.03

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Sullivan KM, Silvey DBJ, Button DC, Behm DG. Roller-massager application to the hamstrings increases sit-and-reach range of motion within five to ten seconds without performance impairments. Int J Sports Phys Ther. 2013;8:228236. PubMed ID: 23772339

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    MacDonald GZ, Button DC, Drinkwater EJ, Behm DG. Foam rolling as a recovery tool after an intense bout of physical activity. Med Sci Sports Exerc. 2014;46:131142. PubMed ID: 24343353 doi:10.1249/MSS.0b013e3182a123db

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Pearcey GEP, Bradbury-Squires DJ, Kawamoto J, Drinkwater EJ, Behm DG, Button DC. Foam rolling for delayed-onset muscle soreness and recovery of dynamic performance measures. J Athl Train. 2015;50:513. PubMed ID: 25415413 doi:10.4085/1062-6050-50.1.01

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Couture G, Karlik D, Glass SC, Hatzel BM. The effect of foam rolling duration on hamstring range of motion. Open Orthop J. 2015;9:450455. PubMed ID: 26587061 doi:10.2174/1874325001509010450

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Noyes FR, DeLucas JL, Torvik PJ. Biomechanics of anterior cruciate ligament failure: an analysis of strain-rate sensitivity and mechanisms of failure in primates. J Bone Joint Surg Am. 1974;56:236253. PubMed ID: 4452684 doi:10.2106/00004623-197456020-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Chaudhry H, Schleip R, Ji Z, Bukiet B, Maney M, Findley T. Three-dimensional mathematical model for deformation of human fasciae in manual therapy. J Am Osteopath Assoc. 2008;108:379390. PubMed ID: 18723456 doi:10.7556/jaoa.2008.108.8.379

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Krause F, Wilke J, Niederer D, Vogt L, Banzer W. Acute effects of foam rolling on passive tissue stiffness and fascial sliding: study protocol for a randomized controlled trial. Trials. 2017;18:114. doi:10.1186/s13063-017-1866-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Wilke J, Vogt L, Pfarr T, Banzer W. Reliability and validity of a semi-electronic tissue compliance meter to assess muscle stiffness [published online ahead of print June13, 2018]. J Back Musculoskelet Rehabil. doi:10.3233/BMR-170871

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Himmelreich H, Stefanicki E, Banzer W. Die Ultraschallgesteuerte Anthropometrie (UGA) – Zur Entwicklung eines neuen Verfahrens in der Asymmetriediagnostik. Sportverletz Sportschaden. 1998;12:6065. doi:10.1055/s-2007-993339

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Hotfiel T, Swoboda B, Krinner S, et al. Acute effects of lateral thigh foam rolling on arterial tissue perfusion determined by spectral Doppler and power Doppler ultrasound. J Strength Cond Res. 2017;31:893900. PubMed ID: 27749733 doi:10.1519/JSC.0000000000001641

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Aboodarda SJ, Greene RM, Philpott DT, Jaswal RS, Millet GY, Behm DG. The effect of rolling massage on the excitability of the corticospinal pathway. Appl Physiol Nutr Metab. 43(4):317323. PubMed ID: 29084391 doi:10.1139/apnm-2017-0408

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Cohen RE, Hooley CJ, McCrum NG. Viscoelastic creep of collagenous tissue. J Biomech. 1976;9:175184. PubMed ID: 1262352 doi:10.1016/0021-9290(76)90002-6.

  • 21.

    Schleip R, Duerselen L, Vleeming A, et al. Strain hardening of fascia: static stretching of dense fibrous connective tissues can induce a temporary stiffness increase accompanied by enhanced matrix hydration. J Bodyw Mov Ther. 2012;16:94100. PubMed ID: 22196433 doi:10.1016/j.jbmt.2011.09.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Zheng L, Huang Y, Song W, et al. Fluid shear stress regulates metalloproteinase-1 and 2 in human periodontal ligament cells: involvement of extracellular signal-regulated kinase (ERK) and P38 signaling pathways. J Biomech. 2012;45:23682375. PubMed ID: 22863019 doi:10.1016/j.jbiomech.2012.07.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Marshall PW, Mannion J, Murphy BA. Extensibility of the hamstrings is best explained by mechanical components of muscle contraction, not behavioral measures in individuals with chronic low back pain. PM&R 2009;1:709718. PubMed ID: 19695522 doi:10.1016/j.pmrj.2009.04.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Marusiak J, Kisiel-Sajewicz K, Jaskólska A, Jaskólski A. Higher muscle passive stiffness in Parkinson’s disease patients than in controls measured by myotonometry. Arch Phys Med Rehabil. 2010;91:800802. PubMed ID: 20434620 doi:10.1016/j.apmr.2010.01.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Watsford ML, Murphy AJ, McLachlan KA, et al. A prospective study of the relationship between lower body stiffness and hamstring injury in professional Australian rules footballers. Am J Sports Med. 2010;38:20582064. PubMed ID: 20595555 doi:10.1177/0363546510370197

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Marusiak J, Jaskólska A, Budrewicz S, Koszewicz M, Jaskólski A. Increased muscle belly and tendon stiffness in patients with Parkinson’s disease, as measured by myotonometry. Mov Disord. 2011;26:21192122. PubMed ID: 21714009 doi:10.1002/mds.23841

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Dierick F, Detrembleur C, Trintignac G, Masquelier E. Nature of passive musculoarticular stiffness increase of ankle in female subjects with fibromyalgia syndrome. Eur J Appl Physiol. 2011;111:21632171. PubMed ID: 21298443 doi:10.1007/s00421-011-1850-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Andonian BJ, Masi AT, Aldag JC, et al. Greater resting lumbar extensor myofascial stiffness in younger ankylosing spondylitis patients than age-comparable healthy volunteers quantified by Myotonometry. Arch Phys Med Rehabil. 2015;96:20412047. PubMed ID: 26254947 doi:10.1016/j.apmr.2015.07.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Leong HT, Hug F, Fu SN, Lucia A. Increased upper trapezius muscle stiffness in overhead athletes with rotator cuff tendinopathy. PLoS ONE. 2016;11:e0155187. PubMed ID: 27159276 doi:10.1371/journal.pone.0155187

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 6931 1013 311
Full Text Views 171 20 2
PDF Downloads 124 9 2