Knee Surgery Is Associated With Greater Odds of Knee Osteoarthritis Diagnosis

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Knee osteoarthritis (OA) frequently develops following knee injury/surgery. It is accepted that knee injury/surgery precipitates OA with previous studies examining this link in terms of years after injury/surgery. However, postinjury OA prevalence has not been examined by decade of life; thereby, limiting our understanding of the age at which patients are diagnosed with posttraumatic knee OA. Objective: Evaluate the association between the knee injury and/or surgical history, present age, and history of receiving a diagnosis of knee OA. Design: Cross-sectional survey. Setting: Online survey. Participants: A total of 3660 adults were recruited through ResearchMatch©. Of these, 1723 (47.1%) were included for analysis due to history of (1) knee surgery (SURG: n = 276; age = 53.8 [15.3] y; and body mass index [BMI] = 29.9 [8.0] kg/m2), (2) nonsurgical knee injury (INJ: n = 449; age = 46.0 [15.6] y; and BMI = 27.5 [6.9] kg/m2), or (3) no knee injury (CTRL: n = 998; age = 44.0 [25.2] y; and BMI = 26.9 [6.6] kg/m2). Respondents were subdivided by decade of life (20–29 through 70+). Intervention: An electronic survey regarding knee injury history, treatment, and diagnosis of knee OA. Main Outcome Measures: Binary logistic regression determined the association between knee surgical status and OA by decade of life. Participants with no histories of OA or lower-extremity injury were the referent categories. BMI was a covariate in all analyses. Results: SURG respondents were more likely to report having knee OA than CTRL for all age groups (odds ratios: 11.43–53.03; P < .001). INJ respondents aged 30 years and older were more likely to have OA than CTRL (odds ratios: 2.99–14.22; P < .04). BMI influenced associations for respondents in their 50s (P = .001) and 60s (P < .001) only. Conclusions: INJ increased the odds of reporting a physician diagnosis of knee OA in adults as young as 30 to 39 years. Importantly, SURG yielded 3 to 4 times greater odds of being diagnosed with knee OA compared with INJ in adults as young as 20 to 29 years. Delaying disease onset in these young adults is imperative to optimize the quality of life long term after surgery.

Thomas is with Biodynamics Research Laboratory, Department of Kinesiology, Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC. Simon is with the Division of Athletic Training, Ohio University, Athens, OH. Evans and Gribble are with Division of Athletic Training, Department of Rehabilitation Sciences, University of Kentucky, Lexington, KY. Turner is with the Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC. Vela is with the Department of Kinesiology, University of Virginia, Charlottesville, VA.

Thomas (afenwick@uncc.edu) is corresponding author.
  • 1.

    National Health Interview Survey (NHIS). Injury database. 2012. www.cdc.gov/nchs/nhis/nhis_2012_data_release.htm. Accessed July 2, 2013.

    • Export Citation
  • 2.

    Muthuri SG, McWilliams DF, Doherty M, Zhang W. History of knee injuries and knee osteoarthritis: a meta-analysis of observational studies. Osteoarthritis Cartilage. 2011;19(11):12861293. PubMed ID: 21884811 doi:10.1016/j.joca.2011.07.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Brown TD, Johnston RC, Saltzman CL, Marsh JL, Buckwalter JA. Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J Orthop Trauma. 2006;20(10):739744. PubMed ID: 17106388 doi:10.1097/01.bot.0000246468.80635.ef

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Anderson DD, Chubinskaya S, Guilak F, et al. Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention. J Orthop Res. 2011;29(6):802809. PubMed ID: 21520254 doi:10.1002/jor.21359

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Ait Si Selmi T, Fithian D, Neyret P. The evolution of osteoarthritis in 103 patients with ACL reconstruction at 17 years follow-up. Knee. 2006;13(5):353358. PubMed ID: 16935515 doi:10.1016/j.knee.2006.02.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Hart AJ, Buscombe J, Malone A, Dowd GS. Assessment of osteoarthritis after reconstruction of the anterior cruciate ligament: a study using single-photon emission computed tomography at ten years. J Bone Joint Surg Br. 2005;87(11):14831487. PubMed ID: 16260663 doi:10.1302/0301-620X.87B11.16138

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Lebel B, Hulet C, Galaud B, Burdin G, Locker B, Vielpeau C. Arthroscopic reconstruction of the anterior cruciate ligament using bone-patellar tendon-bone autograft: a minimum 10-year follow-up. Am J Sports Med. 2008;36(7):12751282. PubMed ID: 18354147 doi:10.1177/0363546508314721

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Lohmander LS, Ostenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 2004;50(10):31453152. PubMed ID: 15476248 doi:10.1002/art.20589

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Nakata K, Shino K, Horibe S, et al. Arthroscopic anterior cruciate ligament reconstruction using fresh-frozen bone plug-free allogeneic tendons: 10-year follow-up. Arthroscopy. 2008;24(3):285291. PubMed ID: 18308179 doi:10.1016/j.arthro.2007.09.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Neuman P, Englund M, Kostogiannis I, Friden T, Roos H, Dahlberg LE. Prevalence of tibiofemoral osteoarthritis 15 years after nonoperative treatment of anterior cruciate ligament injury: a prospective cohort study. Am J Sports Med. 2008;36(9):17171725. PubMed ID: 18483197 doi:10.1177/0363546508316770

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    von Porat A, Roos EM, Roos H. High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann Rheum Dis. 2004;63(3):269273. PubMed ID: 14962961 doi:10.1136/ard.2003.008136

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Wu WH, Hackett T, Richmond JC. Effects of meniscal and articular surface status on knee stability, function, and symptoms after anterior cruciate ligament reconstruction: a long-term prospective study. Am J Sports Med. 2002;30(6):845850. PubMed ID: 12435651 doi:10.1177/03635465020300061501

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Harris KP, Driban JB, Sitler MR, Cattano NM, Balasubramanian E. Tibiofemoral osteoarthritis after surgical or nonsurgical treatment of anterior cruciate ligament rupture: a systematic review. J Athl Train. 2017;52(6):507517. PubMed ID: 25562459 doi:10.4085/1062-6050-49.3.89

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Luc B, Gribble PA, Pietrosimone BG. Osteoarthritis prevalence following anterior cruciate ligament reconstruction: a systematic review and numbers-needed-to-treat analysis. J Athl Train. 2014;49(6):806819. PubMed ID: 25232663 doi:10.4085/1062-6050-49.3.35

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Chatain F, Robinson AH, Adeleine P, Chambat P, Neyret P. The natural history of the knee following arthroscopic medial meniscectomy. Knee Surg Sports Traumatol Arthrosc. 2001;9(1):1518. PubMed ID: 11269578 doi:10.1007/s001670000146

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Englund M, Lohmander LS. Risk factors for symptomatic knee osteoarthritis fifteen to twenty-two years after meniscectomy. Arthritis Rheum. 2004;50(9):28112819. PubMed ID: 15457449 doi:10.1002/art.20489

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Roos H, Lauren M, Adalberth T, Roos EM, Jonsson K, Lohmander LS. Knee osteoarthritis after meniscectomy: prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum. 1998;41(4):687693. PubMed ID: 9550478 doi:10.1002/1529-0131(199804)41:4<687::AID-ART16>3.0.CO;2-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    DeCoster TA, Nepola JV, el-Khoury GY. Cast brace treatment of proximal tibia fractures. A ten-year follow-up study. Clin Orthop Relat Res. 1988(231):196204. PubMed ID: 3370874

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Manidakis N, Dosani A, Dimitriou R, Stengel D, Matthews S, Giannoudis P. Tibial plateau fractures: functional outcome and incidence of osteoarthritis in 125 cases. Int Orthop. 2010;34(4):565570. PubMed ID: 19440710 doi:10.1007/s00264-009-0790-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Volpin G, Dowd GS, Stein H, Bentley G. Degenerative arthritis after intra-articular fractures of the knee. Long-term results. J Bone Joint Surg Br. 1990;72(4):634638. PubMed ID: 2380219 doi:10.1302/0301-620X.72B4.2380219

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Weigel DP, Marsh JL. High-energy fractures of the tibial plateau. Knee function after longer follow-up. J Bone Joint Surg Am. 2002;84-A(9):15411551. PubMed ID: 12208910 doi:10.2106/00004623-200209000-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Rasmussen PS. Tibial condylar fractures. Impairment of knee joint stability as an indication for surgical treatment. J Bone Joint Surg Am. 1973;55(7):13311350. PubMed ID: 4586086 doi:10.2106/00004623-197355070-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Jensen DB, Rude C, Duus B, Bjerg-Nielsen A. Tibial plateau fractures. A comparison of conservative and surgical treatment. J Bone Joint Surg Br. 1990;72(1):4952. PubMed ID: 2298794 doi:10.1302/0301-620X.72B1.2298794

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Roos EM, Lohmander LS. The knee injury and osteoarthritis outcome score (KOOS): from joint injury to osteoarthritis. Health Qual Life Outcomes. 2003;1:64. PubMed ID: 14613558 doi:10.1186/1477-7525-1-64

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Washburn RA, McAuley E, Katula J, Mihalko SL, Boileau RA. The physical activity scale for the elderly (PASE): evidence for validity. J Clin Epidemiol. 1999;52(7):643651. PubMed ID: 10391658 doi:10.1016/S0895-4356(99)00049-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Washburn RA, Smith KW, Jette AM, Janney CA. The physical activity scale for the elderly (PASE): development and evaluation. J Clin Epidemiol. 1993;46(2):153162. PubMed ID: 8437031 doi:10.1016/0895-4356(93)90053-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Docherty CL, Gansneder BM, Arnold BL, Hurwitz SR. Development and reliability of the ankle instability instrument. J Athl Train. 2006;41(2):154158. PubMed ID: 16791299

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Tegner Y, Lysholm J. Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res. 1985(198):4349. PubMed ID: 4028566

  • 29.

    Thomas AC, Hubbard-Turner T, Wikstrom EA, Palmieri-Smith RM. Epidemiology of posttraumatic osteoarthritis. J Athl Train. 2017;52(6):491496. PubMed ID: 27145096 doi:10.4085/1062-6050-51.5.08

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Potter HG, Jain SK, Ma Y, Black BR, Fung S, Lyman S. Cartilage injury after acute, isolated anterior cruciate ligament tear: immediate and longitudinal effect with clinical/MRI follow-up. Am J Sports Med. 2012;40(2):276285. PubMed ID: 21952715 doi:10.1177/0363546511423380

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Hoxie SC, Dobbs RE, Dahm DL, Trousdale RT. Total knee arthroplasty after anterior cruciate ligament reconstruction. J Arthroplasty. 2008;23(7):10051008. PubMed ID: 18534505 doi:10.1016/j.arth.2007.08.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Magnussen RA, Demey G, Lustig S, Servien E, Neyret P. Total knee arthroplasty for secondary osteoarthritis following ACL reconstruction: a matched-pair comparative study of intra-operative and early post-operative complications. Knee. 2012;19(4):275278. PubMed ID: 21636280 doi:10.1016/j.knee.2011.05.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Murtha AS, Johnson AE, Buckwalter JA, Rivera JC. Total knee arthroplasty for posttraumatic osteoarthritis in military personnel under age 50. J Orthop Res. 2017;35(3):677681. PubMed ID: 27177309 doi:10.1002/jor.23290

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Jiang L, Tian W, Wang Y, et al. Body mass index and susceptibility to knee osteoarthritis: a systematic review and meta-analysis. Joint Bone Spine. 2012;79(3):291297. PubMed ID: 21803633 doi:10.1016/j.jbspin.2011.05.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Jones MH, Spindler KP, Fleming BC, et al. Meniscus treatment and age associated with narrower radiographic joint space width 2–3 years after ACL reconstruction: data from the MOON onsite cohort. Osteoarthritis Cartilage. 2015;23(4):581588. PubMed ID: 25559582 doi:10.1016/j.joca.2014.12.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Hawker GA, Stewart L, French MR, et al. Understanding the pain experience in hip and knee osteoarthritis—an OARSI/OMERACT initiative. Osteoarthritis Cartilage. 2008;16(4):415422. PubMed ID: 18296075 doi:10.1016/j.joca.2007.12.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Lee J, Song J, Hootman JM, et al. Obesity and other modifiable factors for physical inactivity measured by accelerometer in adults with knee osteoarthritis. Arthritis Care Res. 2013;65(1):5361. PubMed ID: 22674911 doi:10.1002/acr.21754

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Briggs KK, Steadman JR, Hay CJ, Hines SL. Lysholm score and Tegner activity level in individuals with normal knees. Am J Sports Med. 2009;37(5):898901. PubMed ID: 19307332 doi:10.1177/0363546508330149

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Muraki S, Akune T, Oka H, et al. Association of radiographic and symptomatic knee osteoarthritis with health-related quality of life in a population-based cohort study in Japan: the ROAD study. Osteoarthritis Cartilage. 2010;18(9):12271234. PubMed ID: 20633679 doi:10.1016/j.joca.2010.06.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Turner-Bowker DM, Bayliss MS, Ware JE Jr, Kosinski M. Usefulness of the SF-8 health survey for comparing the impact of migraine and other conditions. Qual Life Res. 2003;12(8):10031012. PubMed ID: 14651418 doi:10.1023/A:1026179517081

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Metrics. ResearchMatch. 2017. https://www.researchmatch.org/metrics/. Accessed February 2, 2017.

    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 229 229 10
Full Text Views 18 18 1
PDF Downloads 8 8 0