The Efficacy of Lower-Limb Screening Tests in Predicting PlayerLoad Within a Professional Soccer Academy

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Training exposure has been associated with injury epidemiology in elite youth soccer, where lower-limb musculoskeletal screening is commonly used to highlight injury risk. However, there has been little consideration of the relationship between lower-limb screening and the loading response to soccer activities. Objective: To quantify the efficacy of using screening tests to predict the loading elicited in soccer-specific activities and to develop a hierarchical ordering of musculoskeletal screening tests to identify test redundancy and inform practice. Design: Correlational. Setting: Professional soccer club academy. Participants: A total of 21 elite male soccer players aged 15.7 (0.9) years. Intervention: Players completed a battery of 5 screening tests (knee to wall, hip internal rotation, adductor squeeze, single-leg hop, and anterior reach) and a 25-minute standardized soccer session with a Global Positioning System unit placed at C7 to collect multiplanar PlayerLoad data. Main Outcome Measures: Baseline data on each screening test, along with uniaxial PlayerLoad in the mediolateral, anteroposterior, and vertical planes. Results: Stepwise hierarchical modeling of the screening tests revealed that dominant leg knee-to-wall distance was the most prevalent and powerful predictor of multiplanar PlayerLoad, accounting for up to 42% of variation in uniaxial loading. The adductor squeeze test was the least powerful predictor of PlayerLoad. Of note, one player who incurred a knee injury within 3 weeks of testing had shown a 20% reduction in knee-to-wall distance compared with peers, and elicited 23% greater PlayerLoad, supporting the hierarchical model. Conclusions: There was some evidence of redundancy in the screening battery, with implications for clinical choice. Hierarchical ordering and a concurrent case study highlight dominant leg knee-to-wall distance as the primary predictor of multiaxial loading in soccer. This has implications for the design and interpretation of screening data in elite youth soccer.

Bowen, Weaver, and Greig are with Sports Injuries Research Group, Department of Sport & Physical Activity, Edge Hill University, Ormskirk, United Kingdom. Relph is with the Department of Applied Health & Social Care, Edge Hill University, Ormskirk, United Kingdom.

Greig (matt.greig@edgehill.ac.uk) is corresponding author.
  • 1.

    Faude O, Robler R, Junge A. Football injuries in children and adolescent players: are there clues for prevention? Sports Med. 2013;43:819–837. PubMed ID: 23723046 doi:10.1007/s40279-013-0061-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Pfirrmann D, Herbst M, Ingelfinger P, Simon P, Tug S. Analysis of injury incidences in male professional adult and elite youth soccer players: a systematic review. J Athl Train. 2016;51(5):410–424. PubMed ID: 27244125 doi:10.4085/1062-6050-51.6.03

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Kawlek K, Garsztka T. An analysis of muscle balance in professional field hockey players. Trends Sports Sci. 2013;4(20):181–187.

  • 4.

    Sheerin KR, Hume PA, Whatman C. Effects of a lower limb functional exercise programme aimed at minimising knee valgus angle on running kinematics in youth athletes. Phys Ther Sport. 2012;13:250–254. PubMed ID: 23068901 doi:10.1016/j.ptsp.2012.01.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Price RJ, Hawkins RD, Hulse MA, Hodson A. The Football Association medical research programme: an audit of injuries in academy youth football. Br J Sports Med. 2004;38:466–471. PubMed ID: 15273188 doi:10.1136/bjsm.2003.005165

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Dallinga JM, Benjaminse A, Kemmink KA. Which screening tools can predict injury to the lower extremities in team sports? Sports Med. 2012;42(9):791–815. PubMed ID: 22909185 doi:10.1007/BF03262295

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Nevin F, Delahunt E. Adductor squeeze test values and hip joint range of motion in Gaelic football athletes with longstanding groin pain. J Sci Med Sport. 2014;17(2):155–159. PubMed ID: 23684372 doi:10.1016/j.jsams.2013.04.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Teyhen DS, Shaffer SW, Lorenson CL, et al. Clinical measures associated with dynamic balance and functional movement. J Strength Cond Res. 2014;28(5):1272–1283. PubMed ID: 24755867 doi:10.1519/JSC.0000000000000272

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    McCall A, Carling C, Nedelec M, et al. Risk factors, testing and preventative strategies for non-contact injuries in professional football: current perceptions and practices of 44 teams from various premier leagues. Br J Sports Med. 2014;48:1352–1357. PubMed ID: 24837243 doi:10.1136/bjsports-2014-093439

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Pacheco MM, Teixeira LA, Franchini E, Takito MY. Functional vs. strength training in adults: specific needs define the best intervention. Int J Sports Phys Ther. 2013;18(1):34–43. PubMed ID: 23439782

    • Search Google Scholar
    • Export Citation
  • 11.

    Miller A, Callister R. Reliable lower limb musculoskeletal profiling using easily operated, portable equipment. Phys Ther Sport. 2009;10(1):30–37. PubMed ID: 19218077 doi:10.1016/j.ptsp.2008.10.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Randers MB, Mujika I, Hewitt A, et al. Application of four different football match analysis systems: a comparative study. J Sports Sci. 2010;28(2):171–182. PubMed ID: 20391091 doi:10.1080/02640410903428525

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Aguiar MV, Botelho GM, Gonçalves BS, Sampaio JE. Physiological responses and activity profiles of football small-sided games. J Strength Cond Res. 2013;27(5):1287–1294. PubMed ID: 22820211 doi:10.1519/JSC.0b013e318267a35c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Akenhead R, Nassis GP. Training load and player monitoring in high-level football: current practice and perceptions. Int J Sports Physiol Perform. 2016;11:587–593. doi:10.1123/ijspp.2015-0331

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Greig M, Nagy P. Lumbar and cervicothoracic-spine loading during a fast-bowling spell. J Sport Rehabil. 2017;26(4):257–262. doi:10.1123/jsr.2015-0174

  • 16.

    Brown W, Greig M. Tri-axial accelerometry as an injury predictor tool in elite soccer. Int J Athl Train Ther. 2017;22(5):44–48. doi:10.1123/ijatt.2017-0004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Cejudo A, Sainz De Baranda P, Ayala F, Santonja F. A simplified version of the weight-bearing ankle lunge test: description and test–retest reliability. Man Ther. 2014;19:355–359. doi:10.1016/j.math.2014.03.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Malliaras P, Hogan A, Nawrocki A, Crossley K, Schache A. Hip flexibility and strength measures: reliability and association with athletic groin pain. Br J Sports Med. 2009;43:739–744. PubMed ID: 19282303 doi:10.1136/bjsm.2008.055749

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Delahunt E, Mcentee BL, Kennelly C, Green BS, Coughlan GF. Intrarater reliability of the adductor squeeze test in Gaelic games athletes. J Athl Train. 2011;46(3):241–245. PubMed ID: 21669092 doi:10.4085/1062-6050-46.3.241

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Gribble PA, Kelly SE, Refshauge KM, Hiller CE. Interrater reliability of the star excursion balance test. J Athl Train. 2013;48(5):621–626. PubMed ID: 24067151 doi:10.4085/1062-6050-48.3.03

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Munro AG, Herrington LC, Carolan M. Reliability of 2-dimensional video assessment of frontal-plane dynamic knee valgus during common athletic screening tasks. J Sport Rehabil. 2012;21:7–11. doi:10.1123/jsr.21.1.7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Jones R, Greig M. In-vivo measurement of tri-axial loading at the head during the rugby tackle. Res Sports Med. 2017;25(4):437–450. PubMed ID: 28795591 doi:10.1080/15438627.2017.1365297

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Bahr R. Why screening tests to predict injury do not work—and probably never will . . . : a critical review. Br J Sports Med. 2016;50:776–780. PubMed ID: 27095747 doi:10.1136/bjsports-2016-096256

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Malloy P, Morgan A, Meinerz C, Geiser C, Kipp K. The association of dorsiflexion flexibility on knee kinematics and kinetics during a drop vertical jump in healthy female athletes. Knee Surg Sports Traumatol Arthrosc. 2015;23(12):3550–3555. doi:10.1007/s00167-014-3222-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Kuhman D, Paquette M, Peel S, Melcher D. Comparison of ankle kinematics and ground reaction forces between prospectively injured and uninjured collegiate cross country runners. Hum Mov Sci. 2016;47:9–15. PubMed ID: 26827155 doi:10.1016/j.humov.2016.01.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hegedus E, McDonough S, Bleakley C, Cook C, Baxter G. Clinician-friendly lower extremity physical performance measures in athletes: a systematic review of measurement properties and correlation with injury, part 1. The tests for knee function including the hop tests. Br J Sports Med. 2014;49(10):642–648. PubMed ID: 25497489 doi:10.1136/bjsports-2014-094094

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Pairot de Fontenay B, Argaud S, Blache Y, Monteil K. Contralateral limb deficit seven months after ACL-reconstruction: an analysis of single-leg hop tests. Knee. 2015;22:309–312. PubMed ID: 25981951 doi:10.1016/j.knee.2015.04.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Delahunt E, Fitzpatrick H, Blake C. Pre-season adductor squeeze test and HAGOS function sport and recreation subscale scores predict groin injury in Gaelic football players. Phys Ther Sport. 2017;23:1–6. PubMed ID: 27636987 doi:10.1016/j.ptsp.2016.07.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Tak I, Glasgow P, Langout R, Weir A, Kerkhoffs G, Agricola R. Hip range of motion is lower in professional soccer players with hip and groin symptoms or previous injuries, independent of cam deformities. Am J Sports Med. 2016;44(3):682–688. PubMed ID: 26673034 doi:10.1177/0363546515617747

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Bedi A, Warren R, Wojtys E, et al. Restriction in hip internal rotation is associated with increased risk of ACL injury. Knee Surg Sports Traumatol Arthrosc. 2016;24:2024–2031. PubMed ID: 25209211 doi:10.1007/s00167-014-3299-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 47 47 17
Full Text Views 11 11 5
PDF Downloads 7 7 3