Hip Abductor and Adductor Muscles Activity Patterns During Landing After Anterior Cruciate Ligament Injury

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Hamstring and quadriceps activity adaptations are well known in individuals with anterior cruciate ligament deficiency (ACLD) and reconstructed (ACLR) to potentially compensate for knee joint instability. However, few studies have explored hip muscles activity patterns after ACL injury. Objective: To examine the activation characteristics of gluteus medius (GMED) and adductor longus in ACLR and ACLD subjects compared with controls. Design: Case–control study. Setting: Athletic training room and university lab. Participants: Twelve healthy and 24 ACL-injured (12 ACLR and 12 ACLD) recreationally active male volunteers. Interventions: Surface electromyography of the GMED and adductor longus were recorded during a single-leg vertical drop landing and normalized to maximum voluntary isometric contractions. Main Outcome Measures: Preparatory and reactive muscle activity and coactivation were analyzed from 100 milliseconds prior to initial contact to 250 milliseconds postcontact. Results: During reactive activity, ACL-injured (ACLR and ACLD) participants demonstrated significantly lower peak GMED activity compared with controls (F = 4.33, P = .02). In addition, ACLR participants exhibited significantly lower reactive GMED:adductor longus coactivation muscle activity compared with controls (F = 4.09, P = .03). Conclusion: Our findings suggest neuromuscular adaptations of the hip musculature are present in people at least 2 years from ACL injury. GMED activation exercises should be considered in designing rehabilitation programs for ACL-injured individuals.

Dashti Rostami is with the Department of Health and Sports Medicine, Faculty of Physical Education and Sports Sciences, University of Tehran, Tehran, Iran. Naderi is with the Department of Health and Sport Sciences, Faculty of Physical Education and Sport Sciences, Shahrood University of Technology, Shahrood, Iran. Thomas is with the Department of Kinesiology, The University of North Carolina at Charlotte, Charlotte, NC.

Dashti Rostami (Kdr_140@yahoo.com) is corresponding author.
  • 1.

    Thomas AC, Villwock M, Wojtys EM, Palmieri-Smith RM. Lower extremity muscle strength after anterior cruciate ligament injury and reconstruction. J Athl Train. 2013;48(5):610–620. PubMed ID: 24067150 doi:10.4085/1062-6050-48.3.23

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Rudolph KS, Snyder-Mackler L. Effect of dynamic stability on a step task in ACL deficient individuals. J Electromyogr Kinesiol. 2004;14(5):565–575. PubMed ID: 15301775 doi:10.1016/j.jelekin.2004.03.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Ingersoll CD, Grindstaff TL, Pietrosimone BG, Hart JM. Neuromuscular consequences of anterior cruciate ligament injury. Clin Sports Med. 2008;27(3):383–404. PubMed ID: 18503874 doi:10.1016/j.csm.2008.03.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Trulsson A, Garwicz M, Ageberg E. Postural orientation in subjects with anterior cruciate ligament injury: development and first evaluation of a new observational test battery. Knee Surg Sports Traumatol Arthrosc. 2010;18(6):814–823. PubMed ID: 19851755 doi:10.1007/s00167-009-0959-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Tanamas S, Hanna FS, Cicuttini FM, Wluka AE, Berry P, Urquhart DM. Does knee malalignment increase the risk of development and progression of knee osteoarthritis? A systematic review. Arthritis Rheum. 2009;61(4):459–467. PubMed ID: 19333985 doi:10.1002/art.24336

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hewett TE, Torg JS, Boden BP. Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism. Br J Sports Med. 2009;43(6):417–422. PubMed ID: 19372088 doi:10.1136/bjsm.2009.059162

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Keays S, Bullock-Saxton J, Newcombe P, Keays A. The relationship between knee strength and functional stability before and after anterior cruciate ligament reconstruction. J Orthop Res. 2003;21(2):231–237. PubMed ID: 12568953 doi:10.1016/S0736-0266(02)00160-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Tsepis E, Vagenas G, Ristanis S, Georgoulis AD. Thigh muscle weakness in ACL-deficient knees persists without structured rehabilitation. Clin Orthop Relat Res. 2006;450:211–218. PubMed ID: 16721346 doi:10.1097/01.blo.0000223977.98712.30

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Snyder-Mackler L, De Luca PF, Williams PR, Eastlack ME, Bartolozzi AR. Reflex inhibition of the quadriceps femoris muscle after injury or reconstruction of the anterior cruciate ligament. J Bone Joint Surg Am. 1994;76(4):555–560. PubMed ID: 8150823 doi:10.2106/00004623-199404000-00010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Urbach D, Nebelung W, Weiler HT, Awiszus F. Bilateral deficit of voluntary quadriceps muscle activation after unilateral ACL tear. Med Sci Sports Exerc. 1999;31(12):1691–1696. PubMed ID: 10613416 doi:10.1097/00005768-199912000-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Di Fabio R, Graf B, Badke M, Breunig A, Jensen K. Effect of knee joint laxity on long-loop postural reflexes: evidence for a human capsular-hamstring reflex. Exp Brain Res. 1992;90(1):189–200. PubMed ID: 1521607 doi:10.1007/BF00229271

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Swanik CB, Lephart SM, Giraldo JL, DeMont RG, Fu FH. Reactive muscle firing of anterior cruciate ligament-injured females during functional activities. J Athl Train. 1999;34(2):121–129. PubMed ID: 16558554

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Kaneko F, Onari K, Kawaguchi K, Tsukisaka K, Roy SH. Electromechanical delay after ACL reconstruction: an innovative method for investigating central and peripheral contributions. J Orthop Sports Phys Ther. 2002;32(4):158–165. PubMed ID: 11949664 doi:10.2519/jospt.2002.32.4.158

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Lass P, Kaalund S, Iefevre S, Arendt-Nielsen L, Sinkjæ T, Simonsen O. Muscle coordination following rupture of the anterior cruciate ligament: electromyographic studies of 14 patients. Acta Orthop Scand. 1991;62(1):9–14. PubMed ID: 2003399 doi:10.3109/17453679108993083

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Swanik CB, Lephart SM, Swanik KA, Stone DA, Fu FH. Neuromuscular dynamic restraint in women with anterior cruciate ligament injuries. Clin Orthop Relat Res. 2004;425:189–199. PubMed ID: 15292807 doi:10.1097/00003086-200408000-00027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Lindström M, Felländer-Tsai L, Wredmark T, Henriksson M. Adaptations of gait and muscle activation in chronic ACL deficiency. Knee Surg Sports Traumatol Arthrosc. 2010;18(1):106–114. PubMed ID: 19693489 doi:10.1007/s00167-009-0886-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Klyne DM, Keays SL, Bullock-Saxton JE, Newcombe PA. The effect of anterior cruciate ligament rupture on the timing and amplitude of gastrocnemius muscle activation: a study of alterations in EMG measures and their relationship to knee joint stability. J Electromyogr Kinesiol. 2012;22(3):446–455. PubMed ID: 22356847 doi:10.1016/j.jelekin.2012.01.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Papadonikolakis A, Cooper L, Stergiou N, Georgoulis AD, Soucacos PN. Compensatory mechanisms in anterior cruciate ligament deficiency. Knee Surg Sports Traumatol Arthrosc. 2003;11(4):235–243. PubMed ID: 12700888 doi:10.1007/s00167-003-0367-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Khayambashi K, Ghoddosi N, Straub RK, Powers CM. Hip muscle strength predicts noncontact anterior cruciate ligament injury in male and female athletes: a prospective study. Am J Sports Med. 2016;44(2):355–361. PubMed ID: 26646514 doi:10.1177/0363546515616237

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Powers CM. The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: a theoretical perspective. J Orthop Sports Phys Ther. 2003;33(11):639–646. PubMed ID: 14669959 doi:10.2519/jospt.2003.33.11.639

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Cameron KL, Peck KY, Owens BD, et al. Biomechanical Risk Factors for Lower Extremity Stress Fracture. Orthop J Sports Med. 2013;1(suppl 4):2325967113S00019. Published 2013 Sep 20. doi:10.1177/2325967113S00019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Friel K, McLean N, Myers C, Caceres M. Ipsilateral hip abductor weakness after inversion ankle sprain. J Athl Train. 2006;41(1):74–78. PubMed ID: 16619098

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Rowe J, Shafer L, Kelley K, et al. Hip strength and knee pain in females. N Am J Sports Phys Ther. 2007;2(3):164–169. PubMed ID: 21522212

  • 24.

    An KN. Muscle force and its role in joint dynamic stability. Clin Orthop Relat Res. 2002;403:S37–S42. PubMed ID: 12394451 doi:10.1097/00003086-200210001-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Duda GN, Schneider E, Chao EY. Internal forces and moments in the femur during walking. J Biomech. 1997;30(9):933–941. PubMed ID: 9302616 doi:10.1016/S0021-9290(97)00057-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Claiborne TL, Armstrong CW, Gandhi V, Pincivero DM. Relationship between hip and knee strength and knee valgus during a single leg squat. J Appl Biomech. 2006;22(1):41–50. PubMed ID: 16760566 doi:10.1123/jab.22.1.41

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hollman JH, Ginos BE, Kozuchowski J, Vaughn AS, Krause DA, Youdas JW. Relationships between knee valgus, hip-muscle strength, and hip-muscle recruitment during a single-limb step-down. J Sport Rehabil. 2009;18(1):104–117. PubMed ID: 19321910 doi:10.1123/jsr.18.1.104

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Jacobs CA, Uhl TL, Mattacola CG, Shapiro R, Rayens WS. Hip abductor function and lower extremity landing kinematics: sex differences. J Athl Train. 2007;42(1):76–83. PubMed ID: 17597947

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Trulsson A, Miller M, Hansson GÅ, Gummesson C, Garwicz M. Altered movement patterns and muscular activity during single and double leg squats in individuals with anterior cruciate ligament injury. BMC Musculoskelet Disord. 2015;16(1):28. PubMed ID: 25887306 doi:10.1186/s12891-015-0472-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Padua DA, Bell DR, Clark MA. Neuromuscular characteristics of individuals displaying excessive medial knee displacement. J Athl Train. 2012;47(5):525–536. PubMed ID: 23068590 doi:10.4085/1062-6050-47.5.10

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Boren K, Conrey C, Le Coguic J, Paprocki L, Voight M, Robinson TK. Electromyographic analysis of gluteus medius and gluteus maximus during rehabilitation exercises. Int J Sports Phys Ther. 2011;6(3):206–223. PubMed ID: 22034614

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Harput G, Howard JS, Mattacola C. Comparison of muscle activation levels between healthy individuals and persons who have undergone anterior cruciate ligament reconstruction during different phases of weight-bearing exercises. J Orthop Sports Phys Ther. 2016;46(11):984–992. PubMed ID: 27733087 doi:10.2519/jospt.2016.5896

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Dalton EC, Pfile KR, Weniger GR, Ingersoll CD, Herman D, Hart JM. Neuromuscular changes after aerobic exercise in people with anterior cruciate ligament-reconstructed knees. J Athl Train. 2011;46(5):476–483. doi:10.4085/1062-6050-46.5.476

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Hall M, Stevermer CA, Gillette JC. Muscle activity amplitudes and co-contraction during stair ambulation following anterior cruciate ligament reconstruction. J Electromyogr Kinesiol. 2015;25(2):298–304. PubMed ID: 25716325 doi:10.1016/j.jelekin.2015.01.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Mauntel TC, Begalle RL, Cram TR, et al. The effects of lower extremity muscle activation and passive range of motion on single leg squat performance. J Strength Cond Res. 2013;27(7):1813–1823. PubMed ID: 23096063 doi:10.1519/JSC.0b013e318276b886

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361–374. PubMed ID: 11018445 doi:10.1016/S1050-6411(00)00027-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Cram JR. Cram’s Introduction to Surface Electromyography. Burlington, MA: Jones & Bartlett Learning; 2011.

  • 38.

    Boudreau SN, Dwyer MK, Mattacola CG, Lattermann C, Uhl TL, McKeon JM. Hip-muscle activation during the lunge, single-leg squat, and step-up-and-over exercises. J Sport Rehabil. 2009;18(1):91–103. PubMed ID: 19321909 doi:10.1123/jsr.18.1.91

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    DeMont RG, Lephart SM, Giraldo JL, Swanik CB, Fu FH. Muscle preactivity of anterior cruciate ligament-deficient and -reconstructed females during functional activities. J Athl Train. 1999;34(2):115–120. PubMed ID: 16558553

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    McNair PJ, Marshall RN. Landing characteristics in subjects with normal and anterior cruciate ligament deficient knee joints. Arch Phys Med Rehabil. 1994;75(5):584–589. PubMed ID: 8185454

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Rudolph K, Axe M, Snyder-Mackler L. Dynamic stability after ACL injury: who can hop? Knee Surg Sports Traumatol Arthrosc. 2000;8(5):262–269. PubMed ID: 11061293 doi:10.1007/s001670000130

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, MI: Erlbaum Associates; 1988.

  • 43.

    Zazulak BT, Ponce PL, Straub SJ, Medvecky MJ, Avedisian L, Hewett TE. Gender comparison of hip muscle activity during single-leg landing. J Orthop Sports Phys Ther. 2005;35(5):292–299. PubMed ID: 15966540 doi:10.2519/jospt.2005.35.5.292

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Carcia CR, Martin RL. The influence of gender on gluteus medius activity during a drop jump. Phys Ther Sport. 2007;8(4):169–176. doi:10.1016/j.ptsp.2007.06.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Russell KA, Palmieri RM, Zinder SM, Ingersoll CD. Sex differences in valgus knee angle during a single-leg drop jump. J Athl Train. 2006;41(2):166–171. PubMed ID: 16791301

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Hart JM, Craig Garrison J, Casey Kerrigan D, Palmieri-Smith R, Ingersoll CD. Gender differences in gluteus medius muscle activity exist in soccer players performing a forward jump. Res Sports Med. 2007;15(2):147–155. PubMed ID: 17578754 doi:10.1080/15438620701405289

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Ferber R, Davis IM, Williams DS III. Gender differences in lower extremity mechanics during running. Clin Biomech. 2003;18(4):350–357. doi:10.1016/S0268-0033(03)00025-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Chaudhari AM, Andriacchi TP. The mechanical consequences of dynamic frontal plane limb alignment for non-contact ACL injury. J Biomech. 2006;39(2):330–338. PubMed ID: 16321635 doi:10.1016/j.jbiomech.2004.11.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Ireland ML. Anterior cruciate ligament injury in female athletes: epidemiology. J Athl Train. 1999;34(2):150–154. PubMed ID: 16558558

  • 50.

    Leetun DT, Ireland ML, Willson JD, Ballantyne BT, Davis IM. Core stability measures as risk factors for lower extremity injury in athletes. Med Sci Sports Exerc. 2004;36(6):926–934. PubMed ID: 15179160 doi:10.1249/01.MSS.0000128145.75199.C3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Tsai LC, McLean S, Colletti PM, Powers CM. Greater muscle co-contraction results in increased tibiofemoral compressive forces in females who have undergone anterior cruciate ligament reconstruction. J Orthop Res. 2012;30(12):2007–2014. PubMed ID: 22730173 doi:10.1002/jor.22176

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 78 78 52
Full Text Views 12 12 4
PDF Downloads 10 10 3