The Effects of Ankle Position on Torque and Muscle Activity of the Knee Extensor During Maximal Isometric Contraction

in Journal of Sport Rehabilitation

Click name to view affiliation

Dae-Hyun Kim
Search for other papers by Dae-Hyun Kim in
Current site
Google Scholar
PubMed
Close
,
Jin-Hee Lee
Search for other papers by Jin-Hee Lee in
Current site
Google Scholar
PubMed
Close
,
Seul-Min Yu
Search for other papers by Seul-Min Yu in
Current site
Google Scholar
PubMed
Close
, and
Chang-Man An
Search for other papers by Chang-Man An in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: It is very important to empirically determine the optimal ankle position for the quadriceps femoris (QF) strengthening during isometric exercises. Objective: To examine the effect of different ankle positions on torque and electromyography (EMG) activity of QF during maximal isometric contraction. Study Design: Within-subject repeated measures. Setting: University laboratory. Participants: Thirty-six healthy volunteers (15 males and 21 females). Main Outcome Measures: The isometric strength of the QF was measured at 3 different ankle positions: active dorsiflexion (AD), active plantar flexion (AP), and neutral position (NP). Simultaneously, 3 different ankle positions were assessed for EMG activity of the vastus medialis, vastus lateralis, and rectus femoris muscles during maximal voluntary isometric contraction. Results: The peak torque per body weight and average peak torque were significantly higher in AD than in AP and NP (P < .01). The vastus medialis and rectus femoris maximal voluntary isometric contraction EMG activity were significantly higher in AD than in AP and NP (P < .01). The vastus lateralis maximal voluntary isometric contraction EMG activity was significantly higher in AD than in AP and NP (P < .01), and was significantly higher in AP than in NP (P < .05). Conclusions: These results indicate that the 3 different ankle positions affect the QF torque and EMG activity. In particular, AD position may be more efficient for improving QF strength than AP and NP position. Future studies should prove whether long-term duration QF isometric exercise effects muscle strength and functional performance in different ankle positions.

The authors are with the Department of Physical Therapy, Chonbuk National University Hospital, Jeonju, South Korea. Kim is also with Graduate School, Daejeon University, Daejeon, South Korea. An is also with the Department of Medical Sciences, Graduate School, Hanseo University, Seosan, South Korea.

An (dks3597@hanmail.net) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Pua YH, Clark RA, Ong PH, Bryant AL, Lo NN, Liang Z. Association between seated postural control and gait speed in knee osteoarthritis. Gait Posture. 2013;37(3):413418. PubMed ID: 22959343 doi:10.1016/j.gaitpost.2012.08.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Angst F, Kaufmann M, Benz T, Nehrer S, Aeschlimann A, Lehmann S. Quadriceps performance under activation of foot dorsal extension in healthy volunteers: an interventional cohort study. BMC Musculoskelet Disord. 2015;16(6):340. PubMed ID: 26546050 doi:10.1186/s12891-015-0774-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Sharp SA, Brouwer BJ. Isokinetic strength training of the hemiparetic knee: effects on function and spasticity. Arch Phys Med Rehabil. 1997;78(11):12311236. PubMed ID: 9365354 doi:10.1016/S0003-9993(97)90337-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hortobágyi T, Westerkamp L, Beam S, et al. Altered hamstring–quadriceps muscle balance in patients with knee osteoarthritis. Clin Biomech. 2005;20(1):97104. PubMed ID: 15567543 doi:10.1016/j.clinbiomech.2004.08.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Bizzini M, Biedert R, Maffiuletti N, Impellizzeri F. Biomechanical issues in patellofemoral joint rehabilitation. Orthopade. 2008;37(9):864871. PubMed ID: 18677462 doi:10.1007/s00132-008-1293-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Matsui Y, Takemura M, Harada A, Ando F, Shimokata H. Effects of knee extensor muscle strength on the incidence of osteopenia and osteoporosis after 6 years. J Bone Miner Metab. 2014;32(5):550555. PubMed ID: 24196869 doi:10.1007/s00774-013-0528-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Kline PW, Johnson DL, Ireland ML, Noehren B. Clinical predictors of knee mechanics at return to sport after ACL reconstruction. Med Sci Sports Exerc. 2016;48(5):790795. PubMed ID: 26694845 doi:10.1249/MSS.0000000000000856

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Beebe JA, Hines RW, McDaniel LT, Shelden BL. An isokinetic training program for reducing falls in a community-dwelling older adult: a case report. J Geriatr Phys Ther. 2013;36(3):146153. PubMed ID: 22976812 doi:10.1519/JPT.0b013e31826e73d5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Marques NR, LaRoche DP, Hallal CZ, et al. Association between energy cost of walking, muscle activation, and biomechanical parameters in older female fallers and non-fallers. Clin Biomech. 2013;28(3):330336. doi:10.1016/j.clinbiomech.2013.01.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Fleck SJ, Kraemer WJ. Designing Resistance Training Programs. 3rd ed. Champaign, IL: Human Kinetics; 2004

  • 11.

    Mendler HM. Effect of stabilization on maximum isometric knee extensor force. Phys Ther. 1967;47(5):375379. PubMed ID: 6045850 doi:10.1093/ptj/47.5.375

  • 12.

    Currier DP. Positioning for knee strengthening exercises. Phys Ther. 1997;57(2):148152. PubMed ID: 834771 doi:10.1093/ptj/57.2.148

  • 13.

    Kendal FP, Wadsworth GE. Muscle Testing and Function. 3rd ed. Williams and Wilkins Co; 1983.

  • 14.

    Hung YJ, Gross MT. Effect of foot position on electromyographic activity of the vastus medialis oblique and vastus lateralis during lower-extremity weight-bearing activities. J Orthop Sports Phys Ther. 1999;29(2):93105. PubMed ID: 10322584 doi:10.2519/jospt.1999.29.2.93

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Baehle TR, Earle RW. Essentials of Strength Training and Conditioning. Champaign, IL: Human Kinetics; 2008.

  • 16.

    Murray N, Cipriani D, O’Rand D, Reed-Jones R. Effects of foot position during squatting on the quadriceps femoris: an electromyographic study. Int J Exerc Sci. 2013;6(2):114125. PubMed ID: 27293497

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Gough JV, Ladley G. An investigation into the effectiveness of various forms of quadriceps exercises. Physiotherapy. 1971;57(8):356361. PubMed ID: 5565217

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Tepperman PS, Mazliah J, Naumann S, Delmore T. Effect of ankle position on isometric quadriceps strengthening. Am J Phys Med. 1986;65(2):6974. PubMed ID: 3963167

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Thorstensson A, Grimby G, Karlsson J. Force-velocity relations and fiber composition in human knee extensor muscles. J Appl Physiol. 1976;40(1):1216. PubMed ID: 1248977 doi:10.1152/jappl.1976.40.1.12

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Tihanyi J, Apor P, Fekete G. Force-velocity-power characteristics and fiber composition in human knee extensor muscles. Eur J Appl Physiol Occup Physiol. 1982;48(3):331343. PubMed ID: 7200876 doi:10.1007/BF00430223

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    McNair PJ, Depledge J, Brettkelly M, Stanley SN. Verbal encouragement: effects on maximum effort voluntary muscle action. Br J Sports Med. 1996;30(3):243245. PubMed ID: 8889120 doi:10.1136/bjsm.30.3.243

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Pincivero DM, Coelho AJ, Campy RM, Salfetnikov Y, Suter E. Knee extensor torque and quadriceps femoris EMG during perceptually-guided isometric contractions. J Electromyogr Kinesiol. 2003;13(2):159167. PubMed ID: 12586521 doi:10.1016/S1050-6411(02)00096-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Zipp P. Recommendations for the standardization of lead positions in surface electromyography. Eur J Appl Physiol. 1982;50(1):4154. doi:10.1007/BF00952243

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Housh TJ, deVries HA, Johnson GO, et al. Neuromuscular fatigue thresholds of the vastus lateralis, vastus medialis and rectus femoris muscles. Electromyogr Clin Neurophysiol. 1996;36(4):247255. PubMed ID: 8803497

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Lieb FJ, Perry J. Quadriceps function. An electromyographic study under isometric conditions. J Bone Joint Surg Am. 1971;53(4):749758. PubMed ID: 5580032 doi:10.2106/00004623-197153040-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Miller JP, Catlaw K, Confessore R. Effect of ankle position on EMG activity and peak torque of the knee extensors and flexors during isokinetic testing. J Sport Rehabil. 1997;6(4):335342. doi:10.1123/jsr.6.4.335

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Croce RV, Miller JP, St Pierre P. Effect of ankle position fixation on peak torque and electromyographic activity of the knee flexors and extensors. Electromyogr Clin Neurophysiol. 2000;40(6):365373. PubMed ID: 11039121

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Katyal S, Nishat Q, Zubia V. Effect of ankle position on isometric quadriceps strengthening in osteoarthritis of knee joint. Indian J Physiother Occup Ther. 2010;4(2):7175.

    • Search Google Scholar
    • Export Citation
  • 29.

    Kim K, Cha YJ, Fell DW. Differential effects of ankle position on isokinetic knee extensor and flexor strength gains during strength training. Isokinet Exerc Sci. 2016;24(3):195199. doi:10.3233/IES-160617

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Herzog W, Read LJ, Ter Keurs HE. Experimental determination of force-length relations of intact human gastrocnemius muscles. Clin Biomech. 1991;6(4):230238. PubMed ID: 23915568 doi:10.1016/0268-0033(91)90051-Q

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Cresswell AG, Löscher WN, Thorstensson A. Influence of gastrocnemius muscle length on triceps surae torque development and electromyographic activity in man. Exp Brain Res. 1995;105(2):283290. PubMed ID: 7498381

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Dimitrijevic MR, McKay WB, Sarjanovic I, Sherwood AM, Svirtlih L, Vrbovà G. Co-activation of ipsi- and contralateral muscle groups during contraction of ankle dorsiflexors. J Neurol Sci. 1992;109(1):4955. PubMed ID: 1517764 doi:10.1016/0022-510X(92)90092-Y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hwang IS, Abraham LD. Quantitative EMG analysis to investigate synergistic coactivation of ankle and knee muscles during isokinetic ankle movement. Part 1: time amplitude analysis. J Electromyogr Kinesiol. 2001;11(5):319325. PubMed ID: 11595551 doi:10.1016/S1050-6411(01)00012-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Marchand-Pauvert V, Nielsen JB. Modulation of non-monosynaptic excitation from ankle dorsiflexor afferents to quadriceps motoneurones during human walking. J Physiol. 2002;538(pt 2):647657. PubMed ID: 11790826 doi:10.1113/jphysiol.2001.012675

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3337 832 20
Full Text Views 43 9 0
PDF Downloads 48 12 0