Roller Massage: Difference in Knee Joint Range of Motion and Pain Perception Among Experienced and Nonexperienced Individuals After Following a Prescribed Program

Click name to view affiliation

Scott W. Cheatham
Search for other papers by Scott W. Cheatham in
Current site
Google Scholar
PubMed
Close
and
Kyle R. Stull
Search for other papers by Kyle R. Stull in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: Roller massage (RM) is a popular myofascial intervention. To date, no research has investigated the effects of RM on experienced and nonexperienced individuals and if there are differences between a prescribed RM program and a self-preferred program. Objective: The main objective was to measure the effects of a prescribed RM program with a foam roller on knee passive range of motion (ROM) and pressure pain threshold (PPT) among experienced and nonexperienced individuals. A secondary objective was to determine if there are differences between a prescribed RM program and a self-preferred program in experienced individuals. Design: Pretest and posttest observational study. Setting: University kinesiology laboratory. Participants: A total of 60 healthy adults (age = 26 [5.3] y) were allocated into 3 groups of 20 subjects: experienced, nonexperienced, and control. The experienced and nonexperienced groups followed a prescribed 2-minute RM intervention. The control group did their own 2-minute self-preferred program. Main Outcome Measures: Knee passive ROM and PPT. Results: For the experienced and nonexperienced, the between-group analysis revealed a statistically significant difference for ROM and PPT (P < .001). Within-group analysis revealed a posttest knee passive ROM increase of 8° for experienced and 7° for the nonexperienced. For PPT, there was a posttest increase of 180 kPa for the experienced and 169 kPa for the nonexperienced. For the prescribed versus self-preferred program, the between-group analysis (experienced vs control) revealed a statistically significant difference (P < .001). The within-group analysis revealed a posttest knee passive ROM increase of 8° for the prescribed and 5° for the self-preferred program. For PPT, there was a posttest increase of 180 kPa for the prescribed program and 137 kPa for the self-preferred program. Conclusion: These findings suggest that experienced and nonexperienced individuals have similar responses to a prescribed RM program. A prescribed RM program may produce better outcomes than a self-preferred program.

Cheatham is with California State University Dominguez Hills, Carson, CA. Stull is with the National Academy of Sports Medicine, Chandler, AZ.

Cheatham (Scheatham@csudh.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Cheatham SW. Roller massage: a descriptive survey of allied health professionals [published online ahead of print October 28, 2018]. J Sport Rehabil. doi:10.1123/jsr.2017-0366

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Thompson WR. Worldwide survey of fitness trends for 2016: 10th anniversary edition. ACSM’s Health Fit J. 2015;19(6):918.

  • 3.

    Thompson WR. Worldwide survey of fitness trends for 2017. ACSM’s Health Fit J. 2016;20(6):817.

  • 4.

    Le Gal J, Begon M, Gillet B, Rogowski I. Effects of self-myofascial release on shoulder function and perception in adolescent tennis players. J Sport Rehabil. 2018;27(6):530535. doi:10.1123/jsr.2016-0240

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Fairall RR, Cabell L, Boergers RJ, Battaglia F. Acute effects of self-myofascial release and stretching in overhead athletes with GIRD. J Bodyw Mov Ther. 2017;21(3):648652. PubMed ID: 28750979 doi:10.1016/j.jbmt.2017.04.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Grieve R, Goodwin F, Alfaki M, Bourton AJ, Jeffries C, Scott H. The immediate effect of bilateral self myofascial release on the plantar surface of the feet on hamstring and lumbar spine flexibility: a pilot randomised controlled trial. J Bodyw Mov Ther. 2015;19(3):544552. PubMed ID: 26118527 doi:10.1016/j.jbmt.2014.12.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Sullivan KM, Silvey DB, Button DC, Behm DG. Roller-massager application to the hamstrings increases sit-and-reach range of motion within five to ten seconds without performance impairments. Int J Sports Phys Ther. 2013;8(3):228236. PubMed ID: 23772339

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    DeBruyne DM, Dewhurst MM, Fischer KM, Wojtanowski MS, Durall C. Self-mobilization using a foam roller versus a roller massager: which is more effective for increasing hamstrings flexibility? J Sport Rehabil. 2017;26(1):94100. PubMed ID: 27632826 doi:10.1123/jsr.2015-0035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Behara B, Jacobson BH. Acute effects of deep tissue foam rolling and dynamic stretching on muscular strength, power, and flexibility in division I linemen. J Strength Cond Res. 2017;31(4):888892. PubMed ID: 26121431 doi:10.1519/JSC.0000000000001051

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Monteiro ER, Cavanaugh MT, Frost DM, Novaes JD. Is self-massage an effective joint range-of-motion strategy? A pilot study. J Bodyw Mov Ther. 2017;21(1):223226. PubMed ID: 28167184 doi:10.1016/j.jbmt.2016.10.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bushell JE, Dawson SM, Webster MM. Clinical relevance of foam rolling on hip extension angle in a functional lunge position. J Strength Cond Res. 2015;29(9):23972403. PubMed ID: 25734777 doi:10.1519/JSC.0000000000000888

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Mohr AR, Long BC, Goad CL. Effect of foam rolling and static stretching on passive hip-flexion range of motion. J Sport Rehabil. 2014;23(4):296299. PubMed ID: 24458506 doi:10.1123/JSR.2013-0025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Vigotsky AD, Lehman GJ, Contreras B, Beardsley C, Chung B, Feser EH. Acute effects of anterior thigh foam rolling on hip angle, knee angle, and rectus femoris length in the modified Thomas test. PeerJ. 2015;3:e1281. PubMed ID: 26421244 doi:10.7717/peerj.1281

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Murray AM, Jones TW, Horobeanu C, Turner AP, Sproule J. Sixty seconds of foam rolling does not affect functional flexibility or change muscle temperature in adolescent athletes. Int J Sports Phys Ther. 2016;11(5):765776. PubMed ID: 27757289

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Cheatham SW, Kolber MJ, Cain M. Comparison of video-guided, live instructed, and self-guided foam roll interventions on knee joint range of motion and pressure pain threshold: a randomized controlled trial. Int J Sports Phys Ther. 2017;12(2):242249. PubMed ID: 28515979

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Cheatham SW, Stull KR, Kolber MJ. Comparison of a vibration roller and a nonvibration roller intervention on knee range of motion and pressure pain threshold: a randomized controlled trial [published online ahead of print October 1, 2018]. J Sport Rehabil. doi:10.1123/jsr.2017-0164

    • Search Google Scholar
    • Export Citation
  • 17.

    Su H, Chang NJ, Wu WL, Guo LY, Chu IH. Acute effects of foam rolling, static stretching, and dynamic stretching during warm-ups on muscular flexibility and strength in young adults. J Sport Rehabil. 2017;26(6):469477. PubMed ID: 27736289 doi:10.1123/jsr.2016-0102

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Couture G, Karlik D, Glass SC, Hatzel BM. The effect of foam rolling duration on hamstring range of motion. Open Orthop J. 2015;9:450455. PubMed ID: 26587061 doi:10.2174/1874325001509010450

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Kelly S, Beardsley C. Specific and cross-over effects of foam rolling on ankle dorsiflexion range of motion. Int J Sports Phys Ther. 2016;11(4):544551. PubMed ID: 27525179

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Skarabot J, Beardsley C, Stirn I. Comparing the effects of self-myofascial release with static stretching on ankle range-of-motion in adolescent athletes. Int J Sports Phys Ther. 2015;10(2):203212. PubMed ID: 25883869

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Cheatham SW, Kolber MJ, Cain M, Lee M. The effects of self-myofascial release using a foam roll or roller massager on joint range of motion, muscle recovery, and performance: a systematic review. Int J Sports Phys Ther. 2015;10(6):827838. PubMed ID: 26618062

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Schroeder AN, Best TM. Is self myofascial release an effective preexercise and recovery strategy? A literature review. Curr Sports Med Rep. 2015;14(3):200208. PubMed ID: 25968853 doi:10.1249/JSR.0000000000000148

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Macdonald GZ, Button DC, Drinkwater EJ, Behm DG. Foam rolling as a recovery tool after an intense bout of physical activity. Med Sci Sports Exerc. 2014;46(1):131142. PubMed ID: 24343353 doi:10.1249/MSS.0b013e3182a123db

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    MacDonald GZ, Penney MD, Mullaley ME, et al. An acute bout of self-myofascial release increases range of motion without a subsequent decrease in muscle activation or force. J Strength Cond Res. 2013;27(3):812821. PubMed ID: 22580977 doi:10.1519/JSC.0b013e31825c2bc1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Cavanaugh MT, Aboodarda SJ, Hodgson D, Behm DG. Foam rolling of quadriceps decreases biceps femoris activation. J Strength Cond Res. 2017;31(8):22382245. PubMed ID: 27642858 doi:10.1519/JSC.0000000000001625

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Aboodarda SJ, Spence AJ, Button DC. Pain pressure threshold of a muscle tender spot increases following local and non-local rolling massage. BMC Musculoskelet Disord. 2015;16:265. PubMed ID: 26416265 doi:10.1186/s12891-015-0729-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Cheatham SW, Baker R. Differences in pressure pain threshold among men and women after foam rolling. J Bodyw Mov Ther. 2017;21(4):978982. PubMed ID: 29037655 doi:10.1016/j.jbmt.2017.06006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Beardsley C, Skarabot J. Effects of self-myofascial release: a systematic review. J Bodyw Mov Ther. 2015;19(4):747758. PubMed ID: 26592233 doi:10.1016/j.jbmt.2015.08.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Rey E, Padron-Cabo A, Costa PB, Barcala-Furelos R. The effects of foam rolling as a recovery tool in professional soccer players [published online ahead of print October 7, 2017]. J Strength Cond Res.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Romero-Moraleda B, La Touche R, Lerma-Lara S, et al. Neurodynamic mobilization and foam rolling improved delayed-onset muscle soreness in a healthy adult population: a randomized controlled clinical trial. PeerJ. 2017;5:e3908. PubMed ID: 29043110 doi:10.7717/peerj.3908

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    D’Amico A, Paolone V. The effect of foam rolling on recovery between two eight hundred metre runs. J Hum Kinet. 2017;57:97105. doi:10.1515/hukin-2017-0051

  • 32.

    D’Amico AP, Gillis J. The influence of foam rolling on recovery from exercise-induced muscle damage [published online ahead of print September 6, 2017]. J Strength Cond Res.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Grgic J, Mikulic P. Tapering practices of Croatian open-class powerlifting champions. J Strength Cond Res. 2017;31(9):23712378. PubMed ID: 27806009 doi:10.1519/JSC.0000000000001699

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Kalen A, Perez-Ferreiros A, Barcala-Furelos R, et al. How can lifeguards recover better? A cross-over study comparing resting, running, and foam rolling. Am J Emerg Med. 2017;35(12):18871891. PubMed ID: 28651888 doi:10.1016/j.ajem.2017.06.028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Ceca D, Elvira L, Guzman JF, Pablos A. Benefits of a self-myofascial release program on health-related quality of life in people with fibromyalgia: a randomized controlled trial. J Sports Med Phys Fitness. 2017;57(7–8):9931002.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Roach S, San Juan JG, Suprak DN, Lyda M. Concurrent validity of digital inclinometer and universal goniometer in assessing passive hip mobility in healthy subjects. Int J Sports Phys Ther. 2013;8(5):680688. PubMed ID: 24175147

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Romero-Franco N, Montano-Munuera JA, Jimenez-Reyes P. Validity and reliability of a digital inclinometer to assess knee joint-position sense in a closed kinetic chain [published online ahead of print January, 2017]. J Sport Rehabil. 2017;26(1): doi:10.1123/jsr.2015-0138

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Konor MM, Morton S, Eckerson JM, Grindstaff TL. Reliability of three measures of ankle dorsiflexion range of motion. Int J Sports Phys Ther. 2012;7(3):279287. PubMed ID: 22666642

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Gnat R, Kuszewski M, Koczar R, Dziewońska A. Reliability of the passive knee flexion and extension tests in healthy subjects. J Manipulative Physiol Ther. 2010;33(9):659665. PubMed ID: 21109056 doi:10.1016/j.jmpt.2010.09.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Cheatham SW, Kolber MJ. Does self-myofascial release with a foam roll change pressure pain threshold of the ipsilateral lower extremity antagonist and contralateral muscle groups? An exploratory study. J Sport Rehabil. 2017;27(2):165169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Monteiro ER, Neto VG. Effect of different foam rolling volumes on knee extension fatigue. Int J Sports Phys Ther. 2016;11(7):10761081. PubMed ID: 27999722

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Chesterton LS, Sim J, Wright CC, Foster NE. Interrater reliability of algometry in measuring pressure pain thresholds in healthy humans, using multiple raters. Clin J Pain. 2007;23(9):760766. PubMed ID: 18075402 doi:10.1097/AJP.0b013e318154b6ae

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Nussbaum EL, Downes L. Reliability of clinical pressure-pain algometric measurements obtained on consecutive days. Phys Ther. 1998;78(2):160169. PubMed ID: 9474108 doi:10.1093/ptj/78.2.160

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Walton DM, Macdermid JC, Nielson W, Teasell RW, Chiasson M, Brown L. Reliability, standard error, and minimum detectable change of clinical pressure pain threshold testing in people with and without acute neck pain. J Orthop Sports Phys Ther. 2011;41(9):644650. PubMed ID: 21885906 doi:10.2519/jospt.2011.3666

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Lee SY, Sung KH, Chung CY, et al. Reliability and validity of the Duncan-Ely test for assessing rectus femoris spasticity in patients with cerebral palsy. Dev Med Child Neurol. 2015;57(10):963968. PubMed ID: 25846806 doi:10.1111/dmcn.12761

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Marks MC, Alexander J, Sutherland DH, Chambers HG. Clinical utility of the Duncan-Ely test for rectus femoris dysfunction during the swing phase of gait. Dev Med Child Neurol. 2003;45(11):763768. PubMed ID: 14580132 doi:10.1111/j.1469-8749.2003.tb00886.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Peeler J, Anderson JE. Reliability of the Ely’s test for assessing rectus femoris muscle flexibility and joint range of motion. J Orthop Res. 2008;26(6):793799. PubMed ID: 18186129 doi:10.1002/jor.20556

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Pearcey GE, Bradbury-Squires DJ, Kawamoto JE, Drinkwater EJ, Behm DG, Button DC. Foam rolling for delayed-onset muscle soreness and recovery of dynamic performance measures. J Athl Train. 2015;50(1):513. PubMed ID: 25415413 doi:10.4085/1062-6050-50.1.01

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Portney LG, Watkins MP. Foundations of Clinical Research: Applications to Practice. New York, NY: Pearson/Prentice Hall; 2009.

  • 50.

    Dugard P, Todman J. Analysis of pre-test–post-test control group designs in educational research. Educ Psychol. 1995;15(2):181198. doi:10.1080/0144341950150207

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Cohen J. A power primer. Psychol Bull. 1992;112(1):155159. PubMed ID: 19565683 doi:10.1037/0033-2909.112.1.155

  • 52.

    Young JD, Spence AJ, Behm DG. Roller massage decreases spinal excitability to the soleus. J Appl Physiol. 2018;124(4):950959. doi:10.1152/japplphysiol.00732.2017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Grabow L, Young JD, Alcock LR, et al. Higher quadriceps roller massage forces do not amplify range of-motion increases or impair strength and jump performance [published online ahead of print March 13, 2017]. J Strength Cond Res.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Jay K, Sundstrup E, Sondergaard SD, et al. Specific and cross over effects of massage for muscle soreness: randomized controlled trial. Int J Sports Phys Ther. 2014;9(1):8291. PubMed ID: 24567859

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Okamoto T, Masuhara M, Ikuta K. Acute effects of self-myofascial release using a foam roller on arterial function. J Strength Cond Res. 2014;28(1):6973. PubMed ID: 23575360 doi:10.1519/JSC.0b013e31829480f5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Hotfiel T, Swoboda B, Krinner S, et al. Acute effects of lateral thigh foam rolling on arterial tissue perfusion determined by spectral Doppler and power Doppler ultrasound. J Strength Cond Res. 2017;31(4):893900. PubMed ID: 27749733 doi:10.1519/JSC.0000000000001641

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Cavanaugh MT, Doweling A, Young JD, et al. An acute session of roller massage prolongs voluntary torque development and diminishes evoked pain. Eur J Appl Physiol. 2017;117(1):109117. PubMed ID: 27853885 doi:10.1007/s00421-016-3503-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Nagi SS, Rubin TK, Chelvanayagam DK, Macefield VG, Mahns DA. Allodynia mediated by C-tactile afferents in human hairy skin. J Physiol. 2011;589(Pt 16):40654075. PubMed ID: 21727219 doi:10.1113/jphysiol.2011.211326

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Nagi SS, Mahns DA. C-tactile fibers contribute to cutaneous allodynia after eccentric exercise. J Pain. 2013;14(5):538548. PubMed ID: 23562300 doi:10.1016/j.jpain.2013.01.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Curran PF, Fiore RD, Crisco JJ. A comparison of the pressure exerted on soft tissue by 2 myofascial rollers. J Sport Rehabil. 2008;17(4):432442. PubMed ID: 19160916 doi:10.1123/jsr.17.4.432

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Cheatham SW, Stull KR. Comparison of a foam rolling session with active joint motion and without joint motion: a randomized controlled trial. J Bodyw Mov Ther. 2018;22(3):707712.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Peacock CA, Krein DD, Antonio J, Sanders GJ, Silver TA, Colas M. Comparing acute bouts of sagittal plane progression foam rolling vs. frontal plane progression foam rolling. J Strength Cond Res. 2015;29(8):23102315. PubMed ID: 25647651 doi:10.1519/JSC.0000000000000867

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Mikesky AE, Bahamonde RE, Stanton K, Alvey T, Fitton T. Acute effects of the stick on strength, power, and flexibility. J Strength Cond Res. 2002;16(3):446450. PubMed ID: 12173961

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Markovic G. Acute effects of instrument assisted soft tissue mobilization vs. foam rolling on knee and hip range of motion in soccer players. J Bodyw Mov Ther. 2015;19(4):690696. PubMed ID: 26592226 doi:10.1016/j.jbmt.2015.04.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Cheatham SW, Stull KR. Comparison of three different density type foam rollers on knee range of motion and pressure pain threshold: a randomized controlled trial. Int J Sports Phys Ther. 2018;13(3):474482. doi:10.26603/ijspt20180474

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2546 606 25
Full Text Views 52 14 4
PDF Downloads 41 9 1