Lower-Extremity Energy Absorption During Side-Step Maneuvers in Females With Knee Valgus Alignment

Click name to view affiliation

Akihiro Tamura
Search for other papers by Akihiro Tamura in
Current site
Google Scholar
PubMed
Close
,
Kiyokazu Akasaka
Search for other papers by Kiyokazu Akasaka in
Current site
Google Scholar
PubMed
Close
, and
Takahiro Otsudo
Search for other papers by Takahiro Otsudo in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: Excessive knee valgus on landing can cause anterior cruciate ligament injury. Therefore, knee valgus alignment may show characteristic energy absorption patterns during landings with lateral movement that impose greater impact forces on the knee joint compared with landings in other alignments. Objective: To investigate the energy absorption strategy in lower-extremities during side steps in females with knee valgus alignment. Design: Controlled laboratory study. Setting: University research laboratory. Participants: A total of 34 female college students participated in this experiment. Interventions: Participants performed single-leg drop vertical jump and side steps. All participants were divided into valgus (n = 13), neutral (n = 9), and varus (n = 12) groups according to knee position during landing in single-leg drop vertical jumps. Main Outcome Measures: Lower-extremity joint angles, moments, and negative works were calculated during landing in side steps, and 1-way analysis of variance and post hoc tests were used to determine between-group differences. Results: Negative works of hip extensors, knee abductors, and ankle plantar flexors during landing in side steps were significantly smaller in the valgus than in the varus group; however, negative work of the knee extensors was significantly greater in the valgus group than in varus group. Conclusions: The findings of this study indicated that landing with knee valgus induced the characteristic energy absorption strategy in the lower-extremity. Knee extensors contributed more to energy absorption when landing in knee valgus than in knee varus alignment. Learning to land in knee varus alignment might reduce the impact on the knee joint by increasing the energy absorption capacities of hip extensors, knee abductors, and ankle plantar flexors.

Tamura is with the Dept of Physical Therapy, School of Health Sciences at Narita, International University of Health and Welfare, Narita, Chiba, Japan. Akasaka, and Otsudo are with the Graduate School of Medicine, Saitama Medical University, Moroyama, Saitama, Japan. Akasaka and Otsudo are also with the School of Physical Therapy, Saitama Medical University, Moroyama, Saitama, Japan.

Akasaka (akasaka-smc@umin.ac.jp) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Mihata LC, Beutler AI, Boden BP. Comparing the incidence of anterior cruciate ligament injury in collegiate lacrosse, soccer, and basketball players: implications for anterior cruciate ligament mechanism and prevention. Am J Sports Med. 2006;34(6):899904. PubMed ID: 16567461 doi:10.1177/0363546505285582

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Griffin LY, Agel J, Albohm MJ, et al. Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Aurg. 2000;8:141150. doi:10.5435/00124635-200005000-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Micheli LJ, Metzl JD, Di Canzio J, Zurakowski D. Anterior cruciate ligament reconstructive surgery in adolescent soccer and basketball players. Clin J Sport Med. 1999;9(3):138141. PubMed ID: 10512341 doi:10.1097/00042752-199907000-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Krosshaug T, Nakamae A, Boden BP, et al. Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med. 2007;35(3):359367. PubMed ID: 17092928 doi:10.1177/0363546506293899

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492501. PubMed ID: 15722287 doi:10.1177/0363546504269591

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Olsen OE, Myklebust G, Engebretsen L, Bahr R. Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med. 2004;32(4):10021012. PubMed ID: 15150050 doi:10.1177/0363546503261724

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Lin CF, Gross M, Ji C, et al. A stochastic biomechanical model for risk and risk factors of non-contact anterior cruciate ligament injuries. J Biomech. 2009;42(4):418423. PubMed ID: 19200994 doi:10.1016/j.jbiomech.2008.12.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hewett TE, Torg JS, Boden BP. Video analysis of trunk and knee motion during noncontact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism. Br J Sports Med. 2009;43(6):417422. PubMed ID: 19372088 doi:10.1136/bjsm.2009.059162

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Bates NA, Ford KR, Myer GD, Hewett TE. Impact differences in ground reaction force and center of mass between the first and second landing phases of a drop vertical jump and their implications for injury risk assessment. J Biomech. 2013;46(7):12371241. PubMed ID: 23538000 doi:10.1016/j.jbiomech.2013.02.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Brown TN, O’Donovan M, Hasselquist L, Corner B, Schiffman JM. Lower limb flexion posture relates to energy absorption during drop landings with soldier-relevant body borne loads. Appl Ergon. 2016;52:5461. PubMed ID: 26360194 doi:10.1016/j.apergo.2015.06.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Zhang SN, Bates BT, Dufek JS. Contributions of lower extremity joints to energy dissipation during landings. Med Sci Sports Exerc. 2000;32(4):812819. PubMed ID: 10776901 doi:10.1097/00005768-200004000-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    DeVita P, Skelly WA. Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med Sci Sports Exerc. 1992;24(1):108115. PubMed ID: 1548984 doi:10.1249/00005768-199201000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Decker MJ, Torry MR, Wyland DJ, Sterett WI, Richard Steadman J. Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clin Biomech. 2003;18(7):662669. doi:10.1016/S0268-0033(03)00090-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Borotikar BS, Newcomer R, Koppes R, McLean SG. Combined effects of fatigue and decision making on female lower limb landing postures: central and peripheral contributions to ACL injury risk. Clin Biomech. 2008;23(1):8192. doi:10.1016/j.clinbiomech.2007.08.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Pollard CD, Sigward SM, Powers CM. Limited hip and knee flexion during landing is associated with increased frontal plane knee motion and moments. Clin Biomech. 2010;25(2):142146. doi:10.1016/j.clinbiomech.2009.10.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Cochrane JL, Lloyd DG, Buttfield A, Seward H, McGivern J. Characteristics of anterior cruciate ligament injuries in Australian football. J Sci Med Sport. 2007;10(2):96104. PubMed ID: 16807104 doi:10.1016/j.jsams.2006.05.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Padua DA, Bell DR, Clark MA, et al. Neuromuscular characteristics of individuals displaying excessive medial knee displacement. J Athl Train. 2012;47(5):525536. PubMed ID: 23068590 doi:10.4085/1062-6050-47.5.10

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Tamura A, Akasaka K, Otsudo T, Shiozawa J, Toda Y, Yamada K. Dynamic knee valgus alignment influences impact attenuation in the lower extremity during the deceleration phase of a single-leg landing. PLoS ONE. 2017;12(6):e0179810. PubMed ID: 28632776 doi:10.1371/journal.pone.0179810

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Wernli K, Ng L, Phan X, Davey P, Grisbrook T. The relationship between landing sound, vertical ground reaction force, and kinematics of the lower limb during drop landings in healthy men. J Orthop Sports Phys Ther. 2016;46(3):194199. PubMed ID: 26813751 doi:10.2519/jospt.2016.6041

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Nakamura E, Moritani T, Kanetaka A. Biological age versus physical fitness age in women. Eur J Appl Physiol Occup Physiol. 1990;61(3–4):202208. PubMed ID: 2289504 doi:10.1007/BF00357600

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Meshizuka T, Nagata A. Adult physical fitness test and physical fitness status of Japanese adults. Jpn J Phys Educ. 1969;13(4):287296.

    • Search Google Scholar
    • Export Citation
  • 22.

    McLean SG, Huang X, van den Bogert AJ. Association between lower extremity posture at contact and peak knee valgus moment during sidestepping: implications for ACL injury. Clin Biomech. 2005;20(8):863870. doi:10.1016/j.clinbiomech.2005.05.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Lucci S, Cortes N, Van Lunen B, Ringleb S, Onate J. Knee and hip sagittal and transverse plane changes after two fatigue protocols. J Sci Med Sport. 2011;14(5):453459. PubMed ID: 21636322 doi:10.1016/j.jsams.2011.05.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Winter DA. Biomechanics and Motor Control of Human Movement. New York, NY: John Wiley; 1990.

  • 25.

    McNitt-Gray JL. Kinetics of the lower extremities during drop landings from three heights. J Biomech. 1993;26(9):10371046. PubMed ID: 8408086 doi:10.1016/S0021-9290(05)80003-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Isear JA Jr, Erickson JC, Worrell TW. EMG analysis of lower extremity muscle recruitment patterns during an unloaded squat. Med Sci Sports Exerc. 1997;29(4):532539. PubMed ID: 9107637 doi:10.1097/00005768-199704000-00016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    McCaw ST, Melrose DR. Stance width and bar load effects on leg muscle activity during the parallel squat. Med Sci Sports Exerc. 1999;31(3):428436. PubMed ID: 10188748 doi:10.1097/00005768-199903000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Grood ES, Noyes FR, Butler DL, Suntay WJ. Ligamentous and capsular restraints preventing straight medial and lateral laxity in intact human cadaver knees. J Bone Joint Surg Am. 1981;63(8):12571269. PubMed ID: 7287796 doi:10.2106/00004623-198163080-00007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Morrison JB. The mechanics of the knee joint in relation to normal walking. J Biomech. 1970;3(1):5161. PubMed ID: 5521530 doi:10.1016/0021-9290(70)90050-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Wikstrom EA, Tillman MD, Schenker S, Borsa PA. Failed jump landing trials: deficits in neuromuscular control. Scand J Med Sci Sports. 2008;18(1):5561. PubMed ID: 17346287 doi:10.1111/j.1600-0838.2006.00629.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2559 331 43
Full Text Views 48 14 1
PDF Downloads 47 14 2