A Novel Blue–Red Photobiomodulation Therapy Patch Effects on a Repetitive Elbow-Flexion Fatigue Task

in Journal of Sport Rehabilitation
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Background : Photobiomodulation (laser/light) therapy has reduced skeletal muscle fatigue and improved performance in previous research. Objective: To determine if the application of a novel blue (450 nm) and red (645 nm) light-emitting diode photobiomodulation therapy patch improves muscle function and decreases perceived exertion after an elbow-flexion fatigue protocol. Participants: Thirty-four strength-trained individuals (male = 32 and female = 2, age = 22.5 [2.7] y). Methods: Participants were randomly assigned to an active or placebo treatment. On  visit 1, participants’ 1-repetition maximal biceps curl was determined, and an orientation session of the fatigue task occurred to ensure no learning effects. Fifty percent of the participants’ 1-repetition maximum was used during the fatigue protocol. On visit 2, participants performed biceps curl repetitions at a speed of 25 repetitions per minute until they could not physically move the weight past 90° of elbow flexion or stay with the set pace. After the fatigue protocol, a 30-minute blue/red light (wavelength = 450 and 645 nm, peak irradiance = 9 mW/cm2, duty cycle = pulsed 33%, and fluence = 5.4 J/cm2) or sham treatment was administered based on the randomized group assignment. Immediately following, the participants repeated the fatigue protocol. The number of complete repetitions was counted, and the participants rated their perceived level of exertion on the Borg scale immediately after each fatigue bout. Results: Overall, fatigue occurred between the 2 exercise bouts (pretreatment = 44.1 [12.3] and posttreatment = 37.4 [9.6] repetitions, P = .02). However, less fatigue was noted in the number of participants of the active treatment group than the sham treatment group. During the posttreatment fatigue task, 29.4% of participants in the active treatment group improved compared to 0% in the sham treatment (P = .045). Conclusion: Nearly 30% of participants had an increase benefit during a repeated-bout fatigue task due to the blue/red light-emitting diode photobiomodulation light patch.

Rigby is with the Department of Physical Therapy and Athletic Training, The University of Utah, Salt Lake City, UT. Hagan is with the Department of Health and Human Performance, Texas State University, San Marcos, TX.

Rigby (Justin.Rigby@health.utah.edu) is corresponding author.
  • 1.

    Anders JJ. Nomenclature consensus meeting. Paper presented at: North American Association for Light Therapy and World Association of Laser Therapy Joint Meeting; May 28, 2015. Arlington, VA. https://www.naalt.org/whitepapers/2014-naalt-walt-meeting-nomenclature-breakout/. Accessed May 2, 2018.

    • Search Google Scholar
    • Export Citation
  • 2.

    Karu TI, Kolyakov SF. Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg. 2005;23(4):355361. PubMed ID: 16144476 doi:10.1089/pho.2005.23.355

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    De Freitas LF, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron. 2016;22(3):7000417. PubMed ID: 28070154 doi:10.1109/JSTQE.2016.2561201

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Hamblin MR. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophysics. 2017;4(3):337361. PubMed ID: 28748217 doi:10.3934/biophy.2017.3.337

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Buravlev EA, Zhidkova TV, Osipov AN, Vladimirov YA. Are the mitochondrial respiratory complexes blocked by NO the targets for the laser and LED therapy? Lasers Med Sci. 2015;30(1):173180. PubMed ID: 25118663 doi:10.1007/s10103-014-1639-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Enwemeka CS. Attenuation and penetration of visible 632.8 nm and invisible infra-red 904 nm light in soft tissues. Laser Ther. 2000;13(1):95101. doi:10.5978/islsm.13.95

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Leal Junior EC, Lopes-Martins RA, Dalan F, et al. Effect of 655-nm low-level laser therapy on exercise-induced skeletal muscle fatigue in humans. Photomed Laser Surg. 2008;26(5):419424. PubMed ID: 18817474 doi:10.1089/pho.2007.2160

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Leal Junior EC, Lopes-Martins RA, Frigo L, et al. Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. J Ortho Sport Phys Ther. 2010;40(8):524532. doi:10.2519/jospt.2010.3294

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Antonialli FC, De Marchi T, Tomazoni SS, et al. Phototherapy in skeletal muscle performance and recovery after exercise: effect of combination of super-pulsed laser and light-emitting diodes. Lasers Med Sci. 2014;29(6):19671976. PubMed ID: 24942380 doi:10.1007/s10103-014-1611-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Leal Junior EC, Lopes-Martins RA, Baroni BM, et al. Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes. Lasers Med Sci. 2009;24(6):857863. PubMed ID: 19057981 doi:10.1007/s10103-008-0633-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Pinto HD, Vanin AA, Miranda EF, et al. Photobiomodulation therapy improves performance and accelerated recovery of high-level rugby players in field test: a randomized, crossover, double-blind, placebo-controlled clinical study. J Strength Cond Res. 2016;30(12):33293338. PubMed ID: 27050245 doi:10.1519/JSC.0000000000001439

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Hawkins RD, Hulse MA, Wilkinson C, Hodson A, Gibson M. The association football medical research programme: an audit of injuries in professional football. Br J Sports Med. 2001;35(1):4347. PubMed ID: 11157461 doi:10.1136/bjsm.35.1.43

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Price RJ, Hawkins RD, Hulse MA, Hodson A. The Football Association medical research programme: an audit of injuries in academy youth football. Br J Sports Med. 2004;38(4):466471. PubMed ID: 15273188 doi:10.1136/bjsm.2003.005165

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Brzycki M. Strength testing—predicting a one-rep max from reps-to-fatigue. J Phys Educ Recreat Dance. 1993;64(1):8890. doi:10.1080/07303084.1993.10606684

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Edwards RH. Human muscle function and fatigue. Ciba Found Symp. 1981;82:118. PubMed ID: 6117420

  • 16.

    Bigland Ritchie B, Johansson R, Lippold OCJ, Woods JJ. Contractile speed and EMG changes during fatigue of sustained maximal voluntary contractions. J Neurophysiol. 1983;50(1):313324. PubMed ID: 6308182 doi:10.1152/jn.1983.50.1.313

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Cairns SP, Inman LAG, MacManus CP, et al. Central activation, metabolites, and calcium handling during fatigue with repeated maximal isometric contractions in human muscle. Eur J Appl Physiol. 2017;117(8):15571571. PubMed ID: 28527013 doi:10.1007/s00421-017-3640-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Yang W-Z, Chen J-Y, Yu J-T, Zhou L-W. Effects of low power laser irradiation on intracellular calcium and histamine release in RBL-2H3 mast cells. Photochem Photobiol. 2007;83(4):979984. PubMed ID: 17645673 doi:10.1111/j.1751-1097.2007.00116.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Karu T. Mitochondrial mechanisms of photobiomodulation in context of new data about multiple roles of ATP. Photomed Laser Surg. 2010;28(2):159160. PubMed ID: 20374017 doi:10.1089/pho.2010.2789

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Miranda EF, Vanin AA, Tomazoni SS, et al. Using pre-exercise photobiomodulation therapy combining super-pulsed lasers and light-emitting diodes to improve performance in progressive cardiopulmonary exercise tests. J Athl Train. 2016;51(2):129135. PubMed ID: 26942660 doi:10.4085/1062-6050-51.3.10

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Leal Junior EC, Vanin AA, Miranda EF, de Carvalho Pde T, Dal Corso S, Bjordal JM. Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci. 2015;30(2):925939. PubMed ID: 24249354 doi:10.1007/s10103-013-1465-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Leal Junior EC, Lopes-Martins RA, Vanin AA, et al. Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med Sci. 2009;24(3):425431. PubMed ID: 18649044 doi:10.1007/s10103-008-0592-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    De Ste Croix MB, Priestley AM, Lloyd RS, Oliver JL. ACL injury risk in elite female youth soccer: changes in neuromuscular control of the knee following soccer-specific fatigue. Scand J Med Sci Sports. 2015;25(5):e531e538. PubMed ID: 25556396 doi:10.1111/sms.12355

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Lessi GC, Silva RS, Serrao FV. Comparison of the effects of fatigue on kinematics and muscle activation between men and women after anterior cruciate ligament reconstruction. Phys Ther Sport. 2018;31:2934. PubMed ID: 29524910 doi:10.1016/j.ptsp.2018.01.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Gutierrez GM, Jackson ND, Dorr KA, Margiotta SE, Kaminski TW. Effect of fatigue on neuromuscular function at the ankle. J Sport Rehab. 2007;16(4):295306. doi:10.1123/jsr.16.4.295

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Malmir K, Olyaei GR, Talebian S, Jamshidi AA. Comparing the effects of peroneal muscle fatigue and cyclic loading on ankle neuromuscular control during lateral-hop landing. J Sport Rehabil. 2015;24(3):293299. doi:10.1123/jsr.2014-0165

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Mair SD, Seaber AV, Glisson RR, Garrett WE Jr. The role of fatigue in susceptibility to acute muscle strain injury. Am J Sports Med. 1996;24(2):137143. PubMed ID: 8775109 doi:10.1177/036354659602400203

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 408 371 38
Full Text Views 168 8 0
PDF Downloads 68 6 0