Cold Water Immersion as a Strategy for Muscle Recovery in Professional Basketball Players During the Competitive Season

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Despite prior studies that have addressed the recovery effects of cold-water immersion (CWI) in different sports, there is a lack of knowledge about longitudinal studies across a full season of competition assessing these effects. Objective: To analyze the CWI effects, as a muscle recovery strategy, in professional basketball players throughout a competitive season. Design: A prospective cohort design. Setting: Elite basketball teams. Participants: A total of 28 professional male basketball players divided into 2 groups: CWI (n = 12) and control (n = 16) groups. Main Outcome Measures: Muscle metabolism serum markers were measured during the season in September—T1, November—T2, March—T3, and April—T4. Isokinetic peak torque strength and ratings of perceived exertion were measured at the beginning and at the end of the season. CWI was applied immediately after every match and after every training session before matches. Results: All serum muscular markers, except myoglobin, were higher in the CWI group than the control group (P < .05). The time course of changes in muscle markers over the season also differed between the groups (P < .05). In the CWI group, ratings of perceived exertion decreased significantly from the beginning (T1–T2) to the end (T3–T4). Isokinetic torque differed between groups at the end of the season (60°/s peak torque: P < .001 and ηp2=.884; and 180°/s peak torque: P < .001 and ηp2=.898) and had changed significantly over the season in the CWI group (P < .05). Conclusions: CWI may improve recovery from muscle damage in professional basketball players during a regular season.

Seco-Calvo and Calvo-Lobo are with the Department of Nursing and Physical Therapy, Institute of Biomedicine (IBIOMED), University of León, León, Spain. Seco-Calvo is also with the University of the Basque Country (UPV/EHU), Leioa, Spain. Mielgo-Ayuso is with the Department of Biochemistry and Physiology, School of Physical Therapy, University of Valladolid, Campus de Soria, Spain. Córdova is with the Department of Biochemistry and Physiology, School of Physical Therapy, University of Valladolid, Campus de Soria, Soria, Spain.

Seco-Calvo (jesus.seco@unileon.es) is corresponding author.
  • 1.

    Nadler SF, Weingand K, Kruse RJ. The physiologic basis and clinical applications of cryotherapy and thermotherapy for the pain practitioner. Pain Physician. 2004;7(3):395399. http://www.ncbi.nlm.nih.gov/pubmed/16858479. Accessed March 27, 2018.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Vaile J, Halson S, Gill N, Dawson B. Effect of cold water immersion on repeat cycling performance and thermoregulation in the heat. J Sports Sci. 2008;26(5):431440. PubMed ID: 18274940 doi:10.1080/02640410701567425

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Pointon M, Duffield R. Cold water immersion recovery after simulated collision sport exercise. Med Sci Sports Exerc. 2012;44(2):206216. PubMed ID: 21716151 doi:10.1249/MSS.0b013e31822b0977

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Howatson G, van Someren KA. The prevention and treatment of exercise-induced muscle damage. Sports Med. 2008;38(6):483503. http://www.ncbi.nlm.nih.gov/pubmed/18489195. Accessed March 27, 2018.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Proske U, Morgan DL. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol. 2001;537(pt 2):333345. http://www.ncbi.nlm.nih.gov/pubmed/11731568. Accessed March 27, 2018.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Paulsen G, Hanssen KE, Rønnestad BR, et al. Strength training elevates HSP27, HSP70 and αB-crystallin levels in musculi vastus lateralis and trapezius. Eur J Appl Physiol. 2012;112(5):17731782. PubMed ID: 21901266 doi:10.1007/s00421-011-2132-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Ferreira-Junior JB, Bottaro M, Loenneke JP, Vieira A, Vieira CA, Bemben MG. Could whole-body cryotherapy (below −100°C) improve muscle recovery from muscle damage? Front Physiol. 2014;5:247. PubMed ID: 25071592 doi:10.3389/fphys.2014.00247

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Wilcock IM, Cronin JB, Hing WA. Physiological response to water immersion: a method for sport recovery? Sports Med. 2006;36(9):747765. http://www.ncbi.nlm.nih.gov/pubmed/16937951. Accessed March 27, 2018.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Vanderlei FM, de Albuquerque MC, de Almeida AC, Machado AF, Netto J, Pastre CM. Post-exercise recovery of biological, clinical and metabolic variables after different temperatures and durations of cold water immersion: a randomized clinical trial. J Sports Med Phys Fitness. 2017;57(10):12671275. PubMed ID: 28116880 doi:10.23736/S0022-4707.17.06841-4

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Mawhinney C, Jones H, Low DA, Green DJ, Howatson G, Gregson W. Influence of cold-water immersion on limb blood flow after resistance exercise. Eur J Sport Sci. 2017;17(5):519529. PubMed ID: 28100130 doi:10.1080/17461391.2017.1279222

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Banfi G, Lombardi G, Colombini A, Melegati G. Whole-body cryotherapy in athletes. Sport Med. 2010;40(6):509517. doi:10.2165/11531940-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Pointon M, Duffield R, Cannon J, Marino FE. Cold application for neuromuscular recovery following intense lower-body exercise. Eur J Appl Physiol. 2011;111(12):29772986. PubMed ID: 21445604 doi:10.1007/s00421-011-1924-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Howatson G, Goodall S, van Someren KA. The influence of cold water immersions on adaptation following a single bout of damaging exercise. Eur J Appl Physiol. 2009;105(4):615621. PubMed ID: 19034491 doi:10.1007/s00421-008-0941-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Vaile J, Halson S, Gill N, Dawson B. Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness. Eur J Appl Physiol. 2008;102(4):447455. PubMed ID: 17978833 doi:10.1007/s00421-007-0605-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Herrera E, Sandoval MC, Camargo DM, Salvini TF. Motor and sensory nerve conduction are affected differently by ice pack, ice massage, and cold water immersion. Phys Ther. 2010;90(4):581591. PubMed ID: 20185615 doi:10.2522/ptj.20090131

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Elias GP, Varley MC, Wyckelsma VL, McKenna MJ, Minahan CL, Aughey RJ. Effects of water immersion on posttraining recovery in Australian footballers. Int J Sports Physiol Perform. 2012;7(4):357366. http://www.ncbi.nlm.nih.gov/pubmed/22645174. Accessed March 27, 2018.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Peake JM, Roberts LA, Figueiredo VC, et al. The effects of cold water immersion and active recovery on inflammation and cell stress responses in human skeletal muscle after resistance exercise. J Physiol. 2017;595(3):695711. PubMed ID: 27704555 doi:10.1113/JP272881

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Bailey DM, Erith SJ, Griffin PJ, et al. Influence of cold-water immersion on indices of muscle damage following prolonged intermittent shuttle running. J Sports Sci. 2007;25(11):11631170. PubMed ID: 17654228 doi:10.1080/02640410600982659

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Lindsay A, Othman MI, Prebble H, Davies S, Gieseg SP. Repetitive cryotherapy attenuates the in vitro and in vivo mononuclear cell activation response. Exp Physiol. 2016;101(7):851865. PubMed ID: 27094349 doi:10.1113/EP085795

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Calleja-González J, Terrados N, Mielgo-Ayuso J, et al. Evidence-based post-exercise recovery strategies in basketball. Phys Sportsmed. 2016;44(1):7478. doi:10.1080/00913847.2016.1102033

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Montgomery PG, Pyne DB, Hopkins WG, Dorman JC, Cook K, Minahan CL. The effect of recovery strategies on physical performance and cumulative fatigue in competitive basketball. J Sports Sci. 2008;26(11):11351145. PubMed ID: 18608847 doi:10.1080/02640410802104912

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Delextrat A, Calleja-González J, Hippocrate A, Clarke ND. Effects of sports massage and intermittent cold-water immersion on recovery from matches by basketball players. J Sports Sci. 2013;31(1):1119. PubMed ID: 22935028 doi:10.1080/02640414.2012.719241

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Jones DM, Roelands B, Bailey SP, Buono MJ, Meeusen R. Impairment of exercise performance following cold water immersion is not attenuated after 7 days of cold acclimation. Eur J Appl Physiol. 2018;118(6):11891197. PubMed ID: 29556772 doi:10.1007/s00421-018-3848-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. J Am Coll Dent. 2014;81(3):1418.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Nikić M, Pedišić Ž, Šatalić Z, Jakovljević S, Venus D. Adequacy of nutrient intakes in elite junior basketball players. Int J Sport Nutr Exerc Metab. 2014;24(5):516523. doi:10.1123/ijsnem.2013-0186

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Dawes HN, Barker KL, Cockburn J, Roach N, Scott O, Wade D. Borg’s rating of perceived exertion scales: do the verbal anchors mean the same for different clinical groups? Arch Phys Med Rehabil. 2005;86(5):912916. PubMed ID: 15895336 doi:10.1016/j.apmr.2004.10.043

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Borg E, Kaijser L. A comparison between three rating scales for perceived exertion and two different work tests. Scand J Med Sci Sport. 2006;16(1):5769. doi:10.1111/j.1600-0838.2005.00448.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Pfeiffer KA, Pivarnik JM, Womack CJ, Reeves MJ, Malina RM. Reliability and validity of the Borg and OMNI rating of perceived exertion scales in adolescent girls. Med Sci Sports Exerc. 2002;34(12):20572061. PubMed ID: 12471316 doi:10.1249/01.MSS.0000039302.54267.BF

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Leeder J, Gissane C, van Someren K, Gregson W, Howatson G. Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med. 2012;46(4):233240. PubMed ID: 21947816 doi:10.1136/bjsports-2011-090061

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Baltaci G, Tunay VB. Isokinetic performance at diagonal pattern and shoulder mobility in elite overhead athletes. Scand J Med Sci Sports. 2004;14(4):231238. PubMed ID: 15265145 doi:10.1111/j.1600-0838.2004.00348.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Cahalan TD, Johnson ME, Chao EY. Shoulder strength analysis using the Cybex II isokinetic dynamometer. Clin Orthop Relat Res. 1991;271:249257. http://www.ncbi.nlm.nih.gov/pubmed/1914303. Accessed April 6, 2018.

    • Search Google Scholar
    • Export Citation
  • 32.

    Ferguson CJ. An effect size primer: a guide for clinicians and researchers. Prof Psychol Res Pract. 2009;40(5):532538. doi:10.1037/a0015808

  • 33.

    Eston R, Peters D. Effects of cold water immersion on the symptoms of exercise-induced muscle damage. J Sports Sci. 1999;17(3):231238. PubMed ID: 10362390 doi:10.1080/026404199366136

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Vaile JM, Gill ND, Blazevich AJ. The effect of contrast water therapy on symptoms of delayed onset muscle soreness. J Strength Cond Res. 2007;21(3):697. PubMed ID: 17685683 doi:10.1519/R-19355.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Jakeman JR, Macrae R, Eston R. A single 10-min bout of cold-water immersion therapy after strenuous plyometric exercise has no beneficial effect on recovery from the symptoms of exercise-induced muscle damage. Ergonomics. 2009;52(4):456460. PubMed ID: 19401897 doi:10.1080/00140130802707733

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Banfi G, Colombini A, Lombardi G, Lubkowska A. Metabolic markers in sports medicine. Adv Clin Chem. 2012;56:154. http://www.ncbi.nlm.nih.gov/pubmed/22397027. Accessed April 6, 2018.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Brancaccio P, Lippi G, Maffulli N. Biochemical markers of muscular damage. Clin Chem Lab Med. 2010;48(6):757767. PubMed ID: 20518645 doi:10.1515/CCLM.2010.179

  • 38.

    Córdova A, Sureda A, Pons A, Alvarez-Mon M. Modulation of TNF-α, TNF-α receptors and IL-6 after treatment with AM3 in professional cyclists. J Sports Med Phys Fitness. 2015;55(4):345351. http://www.ncbi.nlm.nih.gov/pubmed/25369272. Accessed April 6, 2018.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Kahanov L, Eberman LE, Wasik M, Alvey T. Exertional rhabdomyolysis in a collegiate American football player after preventive cold-water immersion: a case report. J Athl Train. 47(2):228232. http://www.ncbi.nlm.nih.gov/pubmed/22488291. Accessed April 6, 2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Córdova A, Martin JF, Reyes E, Alvarez-Mon M. Protection against muscle damage in competitive sports players: the effect of the immunomodulator AM3. J Sports Sci. 2004;22(9):827833. doi:10.1080/02640410410001716742

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Cordova A, Monserrat J, Villa G, Reyes E, Soto MA-M. Effects of AM3 (Inmunoferon) on increased serum concentrations of interleukin-6 and tumour necrosis factor receptors I and II in cyclists. J Sports Sci. 2006;24(6):565573. PubMed ID: 16608770 doi:10.1080/02640410500141158

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Ihsan M, Watson G, Abbiss CR. What are the physiological mechanisms for post-exercise cold water immersion in the recovery from prolonged endurance and intermittent exercise? Sports Med. 2016;46(8):10951109. PubMed ID: 26888646 doi:10.1007/s40279-016-0483-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    West DJ, Cook CJ, Stokes KA, et al. Profiling the time-course changes in neuromuscular function and muscle damage over two consecutive tournament stages in elite rugby sevens players. J Sci Med Sport. 2014;17(6):688692. PubMed ID: 24332752 doi:10.1016/j.jsams.2013.11.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Shearer DA, Sparkes W, Northeast J, Cunningham DJ, Cook CJ, Kilduff LP. Measuring recovery: an adapted Brief Assessment of Mood (BAM+) compared to biochemical and power output alterations. J Sci Med Sport. 2017;20(5):512517. PubMed ID: 27751660 doi:10.1016/j.jsams.2016.09.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Joo CH, Allan R, Drust B, et al. Passive and post-exercise cold-water immersion augments PGC-1α and VEGF expression in human skeletal muscle. Eur J Appl Physiol. 2016;116(11–12):23152326. PubMed ID: 27699485 doi:10.1007/s00421-016-3480-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Cook CJ, Beaven CM. Individual perception of recovery is related to subsequent sprint performance. Br J Sports Med. 2013;47(11):705709. PubMed ID: 23293008 doi:10.1136/bjsports-2012-091647

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Stephens JM, Halson SL, Miller J, Slater GJ, Chapman DW, Askew CD. Effect of body composition on physiological responses to cold-water immersion and the recovery of exercise performance. Int J Sports Physiol Perform. 2018;13(3):382389. PubMed ID: 28787237 doi:10.1123/ijspp.2017-0083

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Argus CK, Broatch JR, Petersen AC, Polman R, Bishop DJ, Halson S. Cold-water immersion and contrast water therapy: no improvement of short-term recovery after resistance training. Int J Sports Physiol Perform. 2017;12(7):886892. PubMed ID: 27918654 doi:10.1123/ijspp.2016-0127

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Stenson MC, Stenson MR, Matthews TD, Paolone VJ. 5000 meter run performance is not enhanced 24 hrs after an intense exercise bout and cold water immersion. J Sports Sci Med. 2017;16(2):272279. http://www.ncbi.nlm.nih.gov/pubmed/28630581. Accessed April 6, 2018.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Pournot H, Bieuzen F, Duffield R, Lepretre P-M, Cozzolino C, Hausswirth C. Short term effects of various water immersions on recovery from exhaustive intermittent exercise. Eur J Appl Physiol. 2011;111(7):12871295. PubMed ID: 21132438 doi:10.1007/s00421-010-1754-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Fröhlich M, Faude O, Klein M, Pieter A, Emrich E, Meyer T. Strength training adaptations after cold-water immersion. J Strength Cond Res. 2014;28(9):26282633. doi:10.1519/JSC.0000000000000434

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Roberts LA, Nosaka K, Coombes JS, Peake JM. Cold water immersion enhances recovery of submaximal muscle function after resistance exercise. Am J Physiol Regul Integr Comp Physiol. 2014;307(8):R998R1008. PubMed ID: 25121612 doi:10.1152/ajpregu.00180.2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 469 468 28
Full Text Views 261 261 6
PDF Downloads 104 104 0