Correlation of Head Impact Exposures With Vestibulo-Ocular Assessments

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Managing a concussion injury should involve the incorporation of a multifaceted approach, including a vision assessment. The frontoparietal circuits and subcortical nuclei are susceptible to trauma from a concussion injury, leading to dysfunction of the vestibulo-ocular system. Research investigating the effect of cumulative subconcussive impacts on neurological function is still in its infancy, but repetitive head impacts may result in vestibular system dysfunction. This dysfunction could create visual deficits, predisposing the individual to further head trauma. Objective: The purpose of this study was to investigate the cumulative effect of subconcussive impacts on minimum perception time, static visual acuity, gaze stability, and dynamic visual acuity scores. Design: Prospective cohort. Setting: Division I university. Patients: Thirty-three Division I men’s lacrosse players (age = 19.52 [1.20] y). Intervention: Competitive lacrosse season. Main Outcome Measures: At the beginning and end of the season, the players completed a vestibulo-ocular reflex assessment, using the InVision system by Neurocom® to assess perception, static acuity, gaze stability, and dynamic visual acuity. Score differentials were correlated with the head impact exposure data collected via instrumented helmets. Results: A significant correlation was found between change in perception scores and total number of head impacts (r = .54), and between changes in dynamic visual acuity loss scores on the rightside and maximum rotational acceleration (r = .36). No statistical differences were found between preseason and postseason vestibulo-ocular reflex variables. Conclusions: Cumulative subconcussive impacts may negatively affect vestibulo-ocular reflex scores, resulting in decreased visual performance. This decrease in vestibulo-ocular function may place the athlete at risk of sustaining additional head impacts or other injuries.

Miyashita is with Exercise Science, Concordia University Chicago, River Forest, IL. Ullucci is with Sacred Heart University, Fairfield, CT.

Miyashita (theresa.miyashita@cuchicago.edu) is corresponding author.
  • 1.

    Bailes JE, Petraglia AL, Omalu BI, Nauman E, Talavage T. Role of subconcussion in repetitive mild traumatic brain injury. J Neurosurg. 2013;119:12351245. PubMed ID: 23971952 doi:10.3171/2013.7.JNS121822

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Gysland S, Mihalik J, Register-Mihalik J, Trulock S, Shields E, Guskiewicz K. The relationship between subconcussive impacts and concussion history on clinical measures of neurologic function in collegiate football players. Ann Biomed Eng. 2012;40(1):1422. PubMed ID: 21994067 doi:10.1007/s10439-011-0421-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hitzeman SA, Beckerman S. What the literature says about sports vision. Optom Clin. 1993;3:145169. PubMed ID: 8324322

  • 4.

    Miller JR, Adamson GJ, Pink MM, Sweek JC. Comparison of preseason, midseason, postseason neurocognitive scores in uninjured collegiate football players. Am J Sports Med. 2007;35:12841288. PubMed ID: 17405886 doi:10.1177/0363546507300261

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Raczek J, Mynarski W. Coordination Motor Abilities of Children and Young People: Internal Structure and Variability. Katowice, Poland: AWF Katowice; 2012. [in Polish]

    • Search Google Scholar
    • Export Citation
  • 6.

    Rowson S, Duma SM. Development of the star evaluation system for football helmets: integrating player head impact exposure and risk of concussion. Ann Biomed Eng. 2011;39(8):21302140. PubMed ID: 21553135 doi:10.1007/s10439-011-0322-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    McAllister TW, Flashman LA, Maerlender A, et al. Cognitive effects of one season of head impacts in a cohort of collegiate contact sport athletes. Neurology. 2012;78:17771784. PubMed ID: 22592370 doi:10.1212/WNL.0b013e3182582fe7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Killam C, Cautin RL, Santucci AC. Assessing the enduring residual neuropsychological effects of head trauma in college athletes who participate in contact sports. Arch Clin Neuropsychol. 2005;20:599611. PubMed ID: 15939185 doi:10.1016/j.acn.2005.02.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    DeFord SM, Wilson MS, Rice AC, et al. Repeated mild brain injuries result in cognitive impairment in B6C3F1 mice. J Neurotrauma. 2002;19:427438. PubMed ID: 11990349 doi:10.1089/08977150252932389

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Cullen KE. The vestibular system: multimodal integration and encoding of self-motion for motor control. Trends Neurosci. 2012;35(3):185196. PubMed ID: 22245372 doi:10.1016/j.tins.2011.12.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Khan S, Chang R. Anatomy of the vestibular system: a review. NeuroRehabilitation. 2013;32(3):437443. PubMed ID: 23648598

  • 12.

    Heitger MH, Anderson TJ, Jones RD, Dalrymple-Alford JC, Frampton CM, Ardagh MW. Eye movement and visuomotor arm movement deficits following mild closed head injury. Brain. 2004;127:575590. PubMed ID: 14736751 doi:10.1093/brain/awh066

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Heitger MH, Anderson TJ, Jones RD. Saccade sequences as markers for cerebral dysfunction following mild closed head injury. Prog Brain Res. 2002;140:433448. PubMed ID: 12508607 doi:10.1016/S0079-6123(02)40067-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Drew AS, Langan J, Halterman C, Osternig LR, Chou LS, van Donkelaar P. Attentional disengagement dysfunction following mTBI assessed with the gap saccade task. Neurosci Lett. 2007;417:6165. PubMed ID: 17363165 doi:10.1016/j.neulet.2007.02.038

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Capo-Aponte JE, Urosevich TG, Temme LA, Tarbett AK, Sanghera NK. Visual dysfunctions and symptoms during the subacute stage of blast-induced mild traumatic brain injury. Mil Med. 2012;177:804813. PubMed ID: 22808887 doi:10.7205/MILMED-D-12-00061

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Cifu DX, Wares JR, Hoke KW, Wetzel PA, Gitchel G, Carne W. Differential eye movements in mild traumatic brain injury versus normal controls. J Head Trauma Rehabil. 2014;30:2128. doi:10.1097/HTR.0000000000000036

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Hoffer ME, Gottshall KR, Moore R, Balough BJ, Wester D. Characterizing and treating dizziness after mild head trauma. Otol Neurotol. 2004;25(2):135138. PubMed ID: 15021772 doi:10.1097/00129492-200403000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Naguib MB, Madian Y, Refaat M, Mohsen O, El Tabakh M, Abo-Setta A. Characterisation and objective monitoring of balance disorders following head trauma, using videonystagmography. J Laryngol Otol. 2012;126(1):2633. PubMed ID: 22035505 doi:10.1017/S002221511100291X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Harpham JA, Mihalik JP, Littleton AC, Frank BS, Guskiewicz KM. The effect of visual and sensory performance on head impact biomechanics in college football players. Ann Biomed Eng. 2014;42:110. PubMed ID: 23918080 doi:10.1007/s10439-013-0881-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Cohen HS, Wells J, Kimball KT, et al. Driving disability and dizziness. J Safety Res. 2003;34:361369. PubMed ID: 14636658 doi:10.1016/j.jsr.2003.09.009

  • 21.

    Schubert MC, Minor LB. Vestibulo-ocular physiology underlying vestibular hypofunction. Phys Ther. 2004;84(4):373385. PubMed ID: 15049730

  • 22.

    Peters BT, Mulavara AP, Cohen HS, Sangi-Haghpeykar H, Bloomberg JJ. Dynamic visual acuity testing for screening patients with vestibular impairments. J Vestib Res. 2012;22(2/3):145151.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Ward BK, Mohammad MT, Whitney SL, Marchetti GF, Furman JM. The reliability, stability, and concurrent validity of a test of gaze stabilization. J Vestib Res. 2010;20(5):363372. PubMed ID: 20826935

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Campbell KR, Warnica MJ, Levine IC, et al. Laboratory evaluation of the gForce Tracker, a head impact kinematic measuring device for use in football helmets. Ann Biomed Eng. 2016:44(4):12461256. doi:10.1007/s10439-015-1391-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Zago M, McIntyre J, Senot P, Lacquaniti F. Visuomotor coordination and internal models for object interception. Exp Brain Res. 2009;192(4):571604. PubMed ID: 19139857 doi:10.1007/s00221-008-1691-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Beckerman S, Hitzeman SA. Sport’s vision testing of selected athletic participants in the 1997 and 1998 AAU Journal Olympic Games. Optometry. 2003;74(8):502516.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 159 159 53
Full Text Views 24 24 1
PDF Downloads 17 17 1