Lumbar Spine Loading During Dressage Riding

in Journal of Sport Rehabilitation
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Lower back pain is prevalent in horse riders as a result of the absorption of repetitive and multiplanar propulsive forces from the horse. Global positioning system technology provides potential for in vivo measurement of planar loading during riding. Objective: To quantify the uniaxial loading at the lumbar and cervicothoracic spine during dressage elements. Design: Repeated measures, randomized order. Setting: Equestrian arena. Patients (or Other Participants): Twenty-one female dressage riders. Intervention(s): Each rider completed walk, rising trot, sitting trot, and canter trials in a randomized order. A global positioning system unit was placed within customized garments at C7 and L5, collecting triaxial accelerometry data at 100 Hz. Outcome Measures: PlayerLoad based on the rate of change of acceleration and calculated in the anteroposterior (AP), mediolateral, and vertical planes during each trial. Results: There was no significant main effect for global positioning system location in the AP (P = .76), mediolateral (P = .88), or vertical (P = .76) planes. There was a significant main effect for pace in all trials (P < .001), with successive elements eliciting significantly greater loading (P ≤ .03) in all planes in the order walk < rising trot < canter < sitting trot. There was a significant placement × element interaction only in the AP plane (P = .03) with AP loading greater at L5 during walk, rising trot, and canter trials, but greater at C7 during sitting trot. Conclusions: The significant main effect for dressage element was indicative of greater pace of the horse, with faster pace activities eliciting greater loading in all planes. In vivo measurement of spinal accelerometry has application in the objective measurement and subsequent management of lumbar load for riders.

The authors are with the Edge Hill University, Ormskirk, United Kingdom.

Greig (greigm@edgehill.ac.uk) is corresponding author.
  • 1.

    Thomas KE, Annest JL, Gilchrist J, Bixby-Hammett DM. Non-fatal horse related injuries treated in emergency departments in the United States, 2001–2003. Br J Sports Med. 2006;40:619626.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Kraft CN, Urban N, Ilg A, et al. Influence of the riding discipline and riding intensity on the incidence of back pain in competitive horseback riders. Sportverletz Sportschaden. 2007;21(1):2933. PubMed ID: 17385102 doi:10.1055/s-2007-963038

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Lewis V, Kennerley R. A preliminary study to investigate the prevalence of pain in elite dressage riders during competition in the United Kingdom. Comp Exerc Physiol. 2017;13(4):259263. doi:10.3920/CEP170016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Kraft CN, Pennekamp PH, Becker U, et al. Magnetic resonance imaging findings of the lumbar spine in elite horseback riders: correlations with back pain, body mass index, trunk/leg-length coefficient, and riding discipline. Am J Sports Med. 2009;37:22052213. PubMed ID: 19574474 doi:10.1177/0363546509336927

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Adams MA, Hutton WC. The mechanical function of the lumbar apophyseal joints. Spine. 1983;8(3):327330. PubMed ID: 6623200 doi:10.1097/00007632-198304000-00017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    von Peinen K, Wiestner T, Bogisch S, Roepstorff L, van Weeren PR, Weishaupt MA. Relationship between the forces acting on the horse’s back and the movements of rider and horse while walking on a treadmill. Equine Vet J. 2010;41:285291. doi:10.2746/042516409X397136

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Jander CB, Greene D, Mcintosh A. Profiling forces experienced by jockeys during stimulated race riding—a single case study. Med Sci Sports Exerc. 2011;43(5):426. doi:10.1249/01.MSS.0000401174.41038.20

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Alexander J, Hobbs SJ, May K, Northrop A, Brigden C, Selfe J. Postural characteristics of female dressage riders using 3D motion analysis and the effects of an athletic taping technique: a randomised control trial. Phys Ther Sport. 2014;16:154161. PubMed ID: 25662002 doi:10.1016/j.ptsp.2014.09.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Greig M, Nagy P. Tri-axial accelerometry differentiates lumbar and cervico-thoracic spine loading during cricket fast bowling. J Sport Rehabil. 2017;26(4):257262. PubMed ID: 27632834 doi:10.1123/jsr.2015-0174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Greig M, Emmerson H, McCreadie J. Is there a role for GPS in determining functional ankle rehabilitation progression criteria? A preliminary study. J Sport Rehabil. 2019;28(7):729734. doi:10.1123/jsr.2018-0045

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Greig M, Child B. Sub-maximal cricket fast bowling offers a disproportionate reduction in loading vs performance: an alternative workload intervention [published online ahead of print June 13, 2019]. J Sport Rehabil. PubMed ID: 30747566 doi:10.1123/jsr.2018-0266

    • Search Google Scholar
    • Export Citation
  • 12.

    Fruehwirth B, Peham C, Scheidl M, Schobeberger H. Evaluation of pressure distribution under an English saddle at walk, trot and canter. Equine Vet J. 2004;36:754757. PubMed ID: 15656510 doi:10.2746/0425164044848235

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Ball D, Herrington L. Training and overload: adaptation and failure in the musculoskeletal system. J Bodywork Mov Ther. 1998;2(3):161167. doi:10.1016/S1360-8592(98)80008-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Mayberry JC, Pearson TE, Wiger KJ, Diggs BS, Mullins RJ. Equestrian injury prevention efforts need more attention to novice riders. J Trauma Injury Infect Crit Care. 2007;62:735739. doi:10.1097/ta.0b013e318031b5d4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Roussouly P, Gollogly S, Berthonnaud E, Dimnet J. Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine. 2005;30:346353. PubMed ID: 15682018 doi:10.1097/01.brs.0000152379.54463.65

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Brodal P. Det nevrobiologiske grunnlaget for balanse [Neurological basis of balance]. Fysioterapeuten. 2004;8:2530.

  • 17.

    Engell MT, Clayton HM, Egenvall A, Weishaupt MA, Roepstorff L. Postural changes and their effects in elite riders when actively influencing the horse versus sitting passively at trot. Comp Exerc Physiol. 2016;12(1):2733. doi:10.3920/CEP150035

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Terada K, Clayton HM, Lanovaz JL, Kato K. Stabilization of wrist position during horseback riding at trot. Equine Comp Exerc Physiol. 2006;3:179184. doi:10.1017/S1478061506337255

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Münz F, Eckardt F, Heipertz-Hengst C, Peham C, Witte K. A preliminary study of an inertial sensor-based method for the assessment of human pelvis kinematics in dressage riding. J Equine Vet Sci. 2013;33:950955. doi:10.1016/j.jevs.2013.02.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Thrasher TA, Sin VW, Mesani K, Vette AH, Craven CB, Popovik MR. Responses of the trunk to multidirectional perturbations during unsupported sitting in normal adults. J Appl Biomech. 2010;26(3):332340. doi:10.1123/jab.26.3.332

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Lovett T, Hodson-Tole E, Nankervis K. A preliminary investigation of rider position during walk, trot and canter. Equine Comp Exerc Physiol. 2005;2:7176. doi:10.1079/ECP200444

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    van Beek FE, de Cocq P, Timmerman E, Muller M. Stirrup forces during horse riding: a comparison between sitting and rising trot. Vet J. 2012;193(1):193198. PubMed ID: 22100209 doi:10.1016/j.tvjl.2011.10.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    de Cocq P, van Weeren PR, Back W. Saddle pressure measuring: validity, reliability and power to discriminate between different saddle-fits. Vet J. 2006;172(1):265273. doi:10.1016/j.tvjl.2005.05.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Panjabi MM. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. Spinal Disord. 1992;5(4):383389. doi:10.1097/00002517-199212000-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Panjabi MM. The stabilizing system of the spine. Part II Neural zone and instability hypothesis. Spinal Disord. 1992;5:390397. doi:10.1097/00002517-199212000-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    McGreevy PD, Rogers LJ. Motor and sensory laterality in thoroughbred horses. Appl Anim Behav Sci. 2005;92(4):337352. doi:10.1016/j.applanim.2004.11.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Quinn S, Bird S. Influence of saddle type upon the incidence of lower back pain in equestrian riders. Br J Sports Med. 1996;30(2):140144. PubMed ID: 8799599 doi:10.1136/bjsm.30.2.140

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Murray RC, Walters J, Smart H, Dyson S, Parkin T. How do features of dressage arenas influence training surface properties which are potentially associated with lameness? Vet J. 2010;186(2):172179. PubMed ID: 20888276 doi:10.1016/j.tvjl.2010.04.026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 602 602 35
Full Text Views 14 14 0
PDF Downloads 8 8 0