Sex-Specific Dependence of Linear and Nonlinear Postural Control Metrics on Anthropometrics During Clinical Balance Tests in Healthy Young Adults

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Previous work suggests that balance behavior is a sex-dependent, complex process that can be characterized by linear and nonlinear metrics. Although a certain degree of center of pressure variability may be expected based on sexual dimorphism, there is evidence to suggest that these effects are obscured by potential interactions between sex and anthropometric factors. To date, no study has accounted for such interactive effects using both linear and nonlinear measures. Objective: This investigation sought to analyze interactive models featuring sex, height, and weight as predictors of linear and nonlinear aspects of postural control. Design: Cross-sectional study. Setting: Controlled laboratory. Participants: A total of 26 males (23.80 [3.44] y, 177.87 [6.44] cm, 81.70 [10.80] kg) and 28 females (21.14 [2.03] y, 169.57 [8.80] cm, 64.48 [8.86] kg) were sampled from a healthy university population. MainOutcomeMeasures: Linear (range [RNG], velocity [VEL], and SD) and nonlinear (detrended fluctuation analysis scaling exponent, multivariate multiscale sample entropy [MMSECI]) summary metrics of center of pressure time series. Procedure: Participants stood on a force plate for 20 seconds in 3 conditions: double (D), single (S), and tandem (T) stance. Data for each stance condition were analyzed using regression models with interaction terms for sex × height and sex × weight. In D, weight had a positive, significant main effect on VELy, MMSECId, and MMSECIv. In men, height was observed to have a positive effect on SDy (S), RNGy (S), and RNGx (T) and a negative effect on MMSECIv (T). In women, weight was observed to have a positive effect on SDy and VELx (both T). Conclusions: Our findings suggest that men and women differ with respect to certain linear and nonlinear aspects of balance behavior, and that these differences may reflect sex-specific behavioral patterns in addition to effects related to sexual dimorphism.

Glass is with the Department of Otolaryngology, The Ohio State University, Columbus, OH, USA. Cone, Rhea, Duffy, and Ross are with the Department of Kinesiology, The University of North Carolina at Greensboro, Greensboro, NC, USA.

Glass (Stephen.glass@osumc.edu) is corresponding author.
  • 1.

    Costello JT, Bieuzen F, Bleakley CM. Where are all the female participants in Sports and Exercise Medicine research? Eur J Sport Sci. 2014;14(8):847851. PubMed ID: 24766579 doi:10.1080/17461391.2014.911354

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Hertel J, Gay MR, Denegar CR. Differences in postural control during single-leg stance among healthy individuals with different foot types. J Athl Train. 2002;37(2):129. PubMed ID: 12937424

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hageman PA, Leibowitz JM, Blanke D. Age and gender effects on postural control measures. Arch Phys Med Rehabil. 1995;76(10):961965. PubMed ID: 7487439 doi:10.1016/S0003-9993(95)80075-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Arendt EA, Agel J, Dick R. Anterior cruciate ligament injury patterns among collegiate men and women. J Athl Train. 1999;34(2):86. PubMed ID: 16558564

  • 5.

    Berz K, Divine J, Foss KB, Heyl R, Ford KR, Myer GD. Sex-specific differences in the severity of symptoms and recovery rate following sports-related concussion in young athletes. Phys Sportsmed. 2013;41(2):5863. PubMed ID: 23703518 doi:10.3810/psm.2013.05.2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bazarian JJ, Blyth B, Mookerjee S, He H, McDermott MP. Sex differences in outcome after mild traumatic brain injury. J Neurotrauma. 2010;27(3):527539. PubMed ID: 19938945 doi:10.1089/neu.2009.1068

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Putukian M, Echemendia R, Dettwiler-Danspeckgruber A, et al. Prospective clinical assessment using Sideline Concussion Assessment Tool-2 testing in the evaluation of sport-related concussion in college athletes. Clin J Sport Med. 2015;25(1):3642. PubMed ID: 24915173 doi:10.1097/JSM.0000000000000102

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Ross SE, Guskiewicz KM. Examination of static and dynamic postural stability in individuals with functionally stable and unstable ankles. Clin J Sport Med. 2004;14(6):332338. PubMed ID: 15523204 doi:10.1097/00042752-200411000-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Iverson GL, Koehle MS. Normative data for the modified balance error scoring system in adults. Brain Inj. 2013;27(5):596599. PubMed ID: 23473405 doi:10.3109/02699052.2013.772237

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Covassin T, Elbin RJ, Harris W, Parker T, Kontos A. The role of age and sex in symptoms, neurocognitive performance, and postural stability in athletes after concussion. Am J Sports Med. 2012;40(6):13031312. PubMed ID: 22539534 doi:10.1177/0363546512444554

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Ross SE, Arnold BL, Blackburn JT, Brown CN, Guskiewicz KM. Enhanced balance associated with coordination training with stochastic resonance stimulation in subjects with functional ankle instability: an experimental trial. J Neuroeng Rehabil. 2007;4:47. PubMed ID: 18086314 doi:10.1186/1743-0003-4-47

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Carpenter MG, Murnaghan CD, Inglis JT. Shifting the balance: evidence of an exploratory role for postural sway. Neuroscience. 2010;171(1):196204. PubMed ID: 20800663 doi:10.1016/j.neuroscience.2010.08.030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Glass SM, Ross SE. Modified functional movement screening as a predictor of tactical performance potential in recreationally active adults. Int J Sports Phys Ther. 2015;10(5):612. PubMed ID: 26491611

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hides JA, Franettovich Smith MM, Mendis MD, et al. A prospective investigation of changes in the sensorimotor system following sports concussion. An exploratory study. Musculoskelet Sci Pract. 2017;29:719. PubMed ID: 28259770 doi:10.1016/j.msksp.2017.02.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Rhine T, Quatman-Yates C, Clark RA. A longitudinal examination of postural impairments in children with mild traumatic brain injury: implications for acute testing. J Head Trauma Rehabil. 2017;32(2):E18E23. PubMed ID: 26580689 doi:10.1097/HTR.0000000000000192

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Quatman-Yates CC, Bonnette S, Hugentobler JA, et al. Postconcussion postural sway variability changes in youth: the benefit of structural variability analyses. Pediatr Phys Ther. 2015;27(4):316327. PubMed ID: 26397071 doi:10.1097/PEP.0000000000000193

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Duarte M, Zatsiorsky VM. Long-range correlations in human standing. Phys Lett A. 2001;283(1–2):124128. doi:10.1016/S0375-9601(01)00188-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Manor B, Costa MD, Hu K, et al. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults. J Appl Physiol. 2010;109(6):17861791. PubMed ID: 20947715 doi:10.1152/japplphysiol.00390.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Boer MC, Fernandes KB, Oliveira MR, et al. Postural control during one-legged stance is compromised in elderly adults with osteoporosis and osteopenia. Eur J Phys Rehabil Med. 2015;51(5):663665. PubMed ID: 25358637

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    de Castro LA, Ribeiro LR, Mesquita R, et al. Static and functional balance in individuals with COPD: comparison with healthy controls and differences according to sex and disease severity. Respir Care. 2016;61(11):14881496. PubMed ID: 27484106 doi:10.4187/respcare.04749

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Era P, Sainio P, Koskinen S, Haavisto P, Vaara M, Aromaa A. Postural balance in a random sample of 7, 979 subjects aged 30 years and over. Gerontology. 2006;52(4):204213. PubMed ID: 16849863 doi:10.1159/000093652

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Duarte M, Sternad D. Complexity of human postural control in young and older adults during prolonged standing. Exp Brain Res. 2008;191(3):265276. PubMed ID: 18696056 doi:10.1007/s00221-008-1521-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Chiari L, Rocchi L, Cappello A. Stabilometric parameters are affected by anthropometry and foot placement. Clin Biomech. 2002;17(9):666677. doi:10.1016/S0268-0033(02)00107-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Kim JW, Eom GM, Kim CS, et al. Sex differences in the postural sway characteristics of young and elderly subjects during quiet natural standing. Geriatr Gerontol Int. 2010;10(2):191198. PubMed ID: 20100287 doi:10.1111/j.1447-0594.2009.00582.x

    • Search Google Scholar
    • Export Citation
  • 25.

    Kim J, Kwon Y, Kim J, et al. Gender-differences in the associations of anthropometry with postural sway in feet-together stance. Int J Precis Eng Manuf. 2012;13(10):18971902. doi:10.1007/s12541-012-0249-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Kim JW, Kwon YR, Jeon HM, Eom GM, Cho YB, Park BK. Gender-difference in the relationship between postural sway and body factors during quiet standing in the elderly. J Mech Med Biol. 2014;14(6):1440008. doi:10.1142/S0219519414400089

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Goldie PA, Bach T, Evans O. Force platform measures for evaluating postural control: reliability and validity. Arch Phys Med Rehabil. 1989;70(7):510517. PubMed ID: 2742465

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Emery CA. Is there a clinical standing balance measurement appropriate for use in sports medicine? A review of the literature. J Sci Med Sport. 2003;6(4):492504. PubMed ID: 14723398 doi:10.1016/S1440-2440(03)80274-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Koltermann J, Gerber M, Beck H, Beck M. Validation of various filters and sampling parameters for a COP analysis. Technologies. 2018;6(2):56. doi:10.3390/technologies6020056

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Ahmed MU, Rehman N, Looney D, Rutkowski TM, Mandic DP. Dynamical complexity of human responses: a multivariate data-adaptive framework. Bull Acad Pol Sci Biol Tech Sci. 2012;60(3):433445.

    • Search Google Scholar
    • Export Citation
  • 31.

    Costa M, Peng CK, Goldberger AL, Hausdorff JM. Multiscale entropy analysis of human gait dynamics. Physica A. 2003;330(1–2):5360. doi:10.1016/j.physa.2003.08.022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Yentes JM, Hunt N, Schmid KK, Kaipust JP, McGrath D, Stergiou N. The appropriate use of approximate entropy and sample entropy with short data sets. Ann Biomed Eng. 2013;41(2):349365. PubMed ID: 23064819 doi:10.1007/s10439-012-0668-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Ahmed MU, Mandic DP. Multivariate multiscale entropy: A tool for complexity analysis of multichannel data. Phys Rev E. 2011;84(6):061918. doi:10.1103/PhysRevE.84.061918

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Breheny P, Huang J. Penalized methods for bi-level variable selection. Stat Interface. 2009;2(3):369380. PubMed ID: 20640242 doi:10.4310/SII.2009.v2.n3.a10

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    O’Malley MJ. Normalization of temporal-distance parameters in pediatric gait. J Biomech. 1996;29(5):619625. doi:10.1016/0021-9290(95)00088-7

  • 36.

    Garcia C. nonlinearTseries: Nonlinear Time Series Analysis. R Package Version 02. 2015;3.

  • 37.

    Breheny P, Huang J. Penalized methods for bi-level variable selection. Exp Brain Res. 2009;2:369380.

  • 38.

    Long JA, Huang J. jtools: analysis and presentation of social scientific data. R package version 2.0.0, https://cran.r-project.org/package=jtools. 2009.

    • Search Google Scholar
    • Export Citation
  • 39.

    Kim J, Kwon Y, Chung HY, et al. Relationship between body factors and postural sway during natural standing. Int J Precis Eng Manuf. 2012;13(6):963968. doi:10.1007/s12541-012-0125-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Johnson ST, Kipp K, Hoffman MA. Spinal motor control differences between the sexes. Eur J Appl Physiol. 2012;112(11):38593864. PubMed ID: 22399160 doi:10.1007/s00421-012-2363-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Conley S, Rosenberg A, Crowninshield R. The female knee: anatomic variations. J Am Acad Orthop Surg. 2007;15:S31S36. PubMed ID: 17766787 doi:10.5435/00124635-200700001-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Taylor JB, Wang HM, Schmitz RJ, Rhea CK, Ross SE, Shultz SJ. Multiplanar knee laxity and perceived function during activities of daily living and sport. J Athl Train. 2015;50(11):11991206. PubMed ID: 26540098 doi:10.4085/1062-6050-50.11.10

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Haran FJ, Dretsch MN, Slaboda JC, Johnson DE, Adam OR, Tsao JW. Comparison of baseline-referenced versus norm-referenced analytical approaches for in-theatre assessment of mild traumatic brain injury neurocognitive impairment. Brain Injury. 2016;30(3):280286. PubMed ID: 26909463 doi:10.3109/02699052.2015.1118766

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 108 108 4
Full Text Views 8 8 1
PDF Downloads 6 6 1