Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Neuromuscular electrical stimulation is widely used to induce muscular strength increase; however, no study has compared Russian current (RC) with pulsed current (PC) effects after a training program. Objectives: We studied the effects of different neuromuscular electrical stimulation currents, RC, and PC on the neuromuscular system after a 6-week training period. Design: Blinded randomized controlled trial. Setting: Laboratory. Patients: A total of 27 male soccer players (age 22.2 [2.2] y, body mass 74.2 [10.0] kg, height 177 [0] cm, and body mass index 23.7 [2.9] kg/cm2 for the control group; 22.1 [3.1] y, 69.7 [5.7] kg, 174 [0] cm, and 23.0 [2.5] kg/cm for the PC group; and 23.0 [3.4] y, 72.1 [10.7] kg, 175 [0] cm, and 23.5 [3.4] kg/cm for the RC group) were randomized into 3 groups: (1) control group; (2) RC (2500 Hz, burst 100 Hz, and phase duration 200 μs); and (3) PC (100 Hz and 200 μs). Intervention: The experimental groups trained for 6 weeks, with 3 sessions per week with neuromuscular electrical stimulation. Main Outcome Measures: Maximal voluntary isometric contraction and evoked torque, muscle architecture, sensory discomfort (visual analog scale), and electromyographic activity were evaluated before and after the 6-week period. Results: Evoked torque increased in the RC (169.5% [78.2%], P < .01) and PC (248.7% [81.1%], P < .01) groups. Muscle thickness and pennation angle increased in the RC (8.7% [3.8%] and 16.7% [9.0%], P < .01) and PC (16.1% [8.0%] and 27.4% [11.0%], P < .01) groups. The PC demonstrated lower values for visual analog scale (38.8% [17.1%], P < .01). There was no significant time difference for maximal voluntary isometric contraction and root mean square values (P > .05). For all these variables, there was no difference between the RC and PC (P > .05). Conclusion: Despite the widespread use of RC in clinical practice, RC and PC training programs produced similar neuromuscular adaptations in soccer players. Nonetheless, as PC generated less perceived discomfort, it could be preferred after several training sessions.

Modesto is with the Graduate Program in Rehabilitation Sciences, University of Brasília, Brasília, Brazil. de Oliveira and Bottaro are with Physical Education Department, University of Brasília, Brasília, Brazil. Fonseca and Azevedo are with Physiotherapy Division, University of Brasília, Brazil. Guzzoni is with Federal University of Paraíba, Brasília, Brazil. Babault is with INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, F-21000, Dijon, France; and the Centre d’Expertise de la Performance, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, F-21000, Dijon, France. Durigan is with the Graduate Program in Rehabilitation Sciences, University of Brasilia, Brasília, Brazil. Modesto is also with the College of Ceilândia, University of Brasília, Brazil.

Modesto (kareninag.87@gmail.com) is corresponding author.
  • 1.

    Bax L, Staes F, Verhagen A. Does neuromuscular electrical stimulation strengthen the quadriceps femoris? A systematic review of randomised controlled trials. Sports Med. 2005;35(3):191212. PubMed ID: 15730336 doi:10.2165/00007256-200535030-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Maffiuletti NA. Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol. 2010;110(2):223234. PubMed ID: 20473619 doi:10.1007/s00421-010-1502-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Salvini TF, Durigan JLQ, Peviani SM, Russo TL. Effects of electrical stimulation and stretching on the adaptation of denervated skeletal muscle: implications for physical therapy. Rev Bras Fisioter. 2012;16(3):175183. PubMed ID: 22699692 doi:10.1590/S1413-35552012005000027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Vaz MA, Baroni BM, Geremia JM, et al. Neuromuscular electrical stimulation (NMES) reduces structural and functional losses of quadriceps muscle and improves health status in patients with knee osteoarthritis. J Orthop Res. 2013;31(4):511516. PubMed ID: 23138532 doi:10.1002/jor.22264

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Aldayel A, Jubeau M, McGuigan M, Nosaka K. Comparison between alternating and pulsed current electrical muscle stimulation for muscle and systemic acute responses. J Appl Physiol. 2010;109(3):735744. PubMed ID: 20595542 doi:10.1152/japplphysiol.00189.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    da Silva VZM, Durigan JLQ, Arena R, de Noronha M, Gurney B, Cipriano G. Current evidence demonstrates similar effects of kilohertz-frequency and low-frequency current on quadriceps evoked torque and discomfort in healthy individuals: a systematic review with meta-analysis. Physiother Theor Pract. 2015;31(8):533539. doi:10.3109/09593985.2015.1064191

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Ward AR, Shkuratova N. Russian electrical stimulation: the early experiments. Phys Ther. 2002;82(10):10191030. PubMed ID: 12350217

  • 8.

    Ward AR, Robertson VJ. The variation in fatigue rate with frequency using kHz frequency alternating current. Med Eng Phys. 2000;22(9):637646. PubMed ID: 11259932 doi:10.1016/S1350-4533(00)00085-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Ward AR, Chuen WLH. Lowering of sensory, motor, and pain-tolerance thresholds with burst duration using kilohertz-frequency alternating current electric stimulation: part II. Arch Phys Med Rehabil. 2009;90(9):16191627. PubMed ID: 19735792 doi:10.1016/j.apmr.2009.02.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Selkowitz DM. High frequency electrical stimulation in muscle strengthening. Am J Sports Med. 1989;17(1):103111. PubMed ID: 2648872 doi:10.1177/036354658901700118

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Liebano RE, Waszczuk S, Corrêa JB. The effect of burst-duty-cycle parameters of medium-frequency alternating current on maximum electrically induced torque of the quadriceps femoris, discomfort, and tolerated current amplitude in professional soccer players. J Orthop Sports Phys Ther. 2013;43(12):920926. PubMed ID: 24175604 doi:10.2519/jospt.2013.4656

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Dantas LO, Vieira A, Siqueira AL, Salvini TF, Durigan JLQ. Comparison between the effects of 4 different electrical stimulation current waveforms on isometric knee extension torque and perceived discomfort in healthy women. Muscle Nerve. 2015;51(1):7682. PubMed ID: 24809656 doi:10.1002/mus.24280

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Szecsi J, Fornusek C. Comparison of torque and discomfort produced by sinusoidal and rectangular alternating current electrical stimulation in the quadriceps muscle at variable burst duty cycles. Am J Phys Med Rehabil. 2014;93(2):146159. PubMed ID: 24322430 doi:10.1097/PHM.0000000000000008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Medeiros FV, Bottaro M, Vieira A, et al. Kilohertz and low-frequency electrical stimulation with the same pulse duration have similar efficiency for inducing isometric knee extension torque and discomfort. Am J Phys Med Rehabil. 2017;96(6):388394. PubMed ID: 27680427 doi:10.1097/PHM.0000000000000631

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Vaz MA, Frasson VB. Low-frequency pulsed current versus kilohertz-frequency alternating current: a scoping literature review. Arch Phys Med Rehabil. 2018;99(4):792805. PubMed ID: 29247626 doi:10.1016/j.apmr.2017.12.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Maffiuletti NA, Cometti G, Amiridis IG, Martin A, Pousson M, Chatard JC. The effects of electromyostimulation training and basketball practice on muscle strength and jumping ability. Int J Sports Med. 2000;21(6):437443. PubMed ID: 10961520 doi:10.1055/s-2000-3837

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Brocherie F, Babault N, Cometti G, Maffiuletti N, Chatard J-C. Electrostimulation training effects on the physical performance of ice hockey players. Med Sci Sports Exerc. 2005;37(3):455460. PubMed ID: 15741845 doi:10.1249/01.MSS.0000155396.51293.9F

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Filipovic A, Kleinöder H, Dörmann U, Mester J. Electromyostimulation—A systematic review of the effects of different electromyostimulation methods on selected strength parameters in trained and elite athletes. J Strength Cond Res. 2012;26(9):26002614. PubMed ID: 22067247 doi:10.1519/JSC.0b013e31823f2cd1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Billot M, Martin A, Paizis C, Cometti C, Babault N. Effects of an electrostimulation training program on strength, jumping, and kicking capacities in soccer players. J Strength Cond Res. 2010;24(5):14071413. PubMed ID: 20386476 doi:10.1519/JSC.0b013e3181d43790

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Blazevich AJ, Gill ND, Zhou S. Intra- and intermuscular variation in human quadriceps femoris architecture assessed in vivo. J Anat. 2006;209(3):289310. PubMed ID: 16928199 doi:10.1111/j.1469-7580.2006.00619.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361374. PubMed ID: 11018445 doi:10.1016/S1050-6411(00)00027-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Gondin J, Guette M, Ballay Y, Martin A. Electromyostimulation training effects on neural drive and muscle architecture. Med Sci Sports Exerc. 2005;37(8):12911299. PubMed ID: 16118574 doi:10.1249/01.mss.0000175090.49048.41

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Stevenson SW, Dudley GA. Creatine loading, resistance exercise performance, and muscle mechanics. J Strength Cond Res. 2001;15(4):413419. PubMed ID: 11726250

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Kubo K, Ohgo K, Takeishi R, et al. Effects of isometric training at different knee angles on the muscle-tendon complex in vivo. Scand J Med Sci Sports. 2006;16(3):159167. PubMed ID: 16643193 doi:10.1111/j.1600-0838.2005.00450.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Alegre LM, Ferri-Morales A, Rodriguez-Casares R, Aguado X. Effects of isometric training on the knee extensor moment-angle relationship and vastus lateralis muscle architecture. Eur J Appl Physiol. 2014;114(11):24372446. PubMed ID: 25099962 doi:10.1007/s00421-014-2967-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Noorkõiv M, Nosaka K, Blazevich AJ. Effects of isometric quadriceps strength training at different muscle lengths on dynamic torque production. J Sports Sci. 2015;33(18):19521961. doi:10.1080/02640414.2015.1020843

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Babault N, Cometti G, Bernardin M, Pousson M, Chatard J-C. Effects of electromyostimulation training on muscle strength and power of elite rugby players. J Strength Cond Res. 2007;21(2):431437. PubMed ID: 17530954

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Barss TS, Ainsley EN, Claveria-Gonzalez FC, et al. Utilizing physiological principles of motor unit recruitment to reduce fatigability of electrically-evoked contractions: a narrative review. Arch Phys Med Rehabil. 2018;99(4):779791. PubMed ID: 28935232 doi:10.1016/j.apmr.2017.08.478

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Liebano RE, Alves LM. Comparação do índice de desconforto sensorial durante a estimulação elétrica neuromuscular com correntes excitomotoras de baixa e média frequência em mulheres saudáveis. Rev Bras Med Esporte. 2009;15(1):5053. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922009000100011&xlng=pt&tlng=pt. doi:10.1590/S1517-86922009000100011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Delitto A, Strube MJ, Shulman AD, Minor SD. A study of discomfort with electrical stimulation. Phys Ther. 1992;72(6):410421; discussion on 421–4. PubMed ID: 1589461 doi:10.1093/ptj/72.6.410

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Malatesta D, Cattaneo F, Dugnani S, Maffiuletti NA. Effects of electromyostimulation training and volleyball practice on jumping ability. J Strength Cond Res. 2003;17(3):573579. PubMed ID: 12930189

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Häkkinen K. Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol. 2003;89(6):555563. PubMed ID: 12734759 doi:10.1007/s00421-003-0833-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 297 297 79
Full Text Views 14 14 1
PDF Downloads 8 8 1