Temporal Patterns of Knee-Extensor Isokinetic Torque Strength in Male and Female Athletes Following Comparison of Anterior Thigh and Knee Cooling Over a Rewarming Period

in Journal of Sport Rehabilitation
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: The effect of local cooling on muscle strength presents conflicting debates, with literature undecided as to the potential implications for injury, when returning to play following cryotherapy application. Objective: To investigate concentric muscle strength following local cooling over the anterior thigh compared with the knee joint in males and females and the temporal pattern over a 30-minute rewarming period. Design: Repeated-measures crossover design. Method: Twelve healthy participants randomly assigned to receive cooling intervention on one location, directly over either the anterior thigh or the knee, returning 1 week later to receive the cooling intervention on opposite location. Muscle strength measured via an isokinetic dynamometer at multiple time points (immediately post, 10-, 20-, and 30-min post) coincided with measurement of skin surface temperature (Tsk) using a noninvasive infrared camera. Results: Significant main effects for time (P ≤ .001, η2 = .126) with preice application higher than all other time points (P ≤ .05) were demonstrated for both peak torque and average torque. There were also significant main effects for isokinetic testing speed, sex of the participant, and position of the ice application for both peak torque and average torque (P ≤ .05). Statistically significant decreases in Tsk were reported in both gender groups across all time points compared with preintervention Tsk for the anterior thigh and knee (P < .05). Conclusions: Reductions reported for concentric peak torque and average torque knee-extensor strength in males and females did not fully recover to baseline measures at 30-minute postcryotherapy interventions. Sports medicine practitioners should consider strength deficits of the quadriceps after wetted ice applications, regardless of cooling location (joint/muscle) or gender.

The authors are with the Division of Rehabilitation Sciences, School of Health Sciences, University of Central Lancashire, Preston, United Kingdom.

Alexander (JAlexander3@uclan.ac.uk) is corresponding author.
  • 1.

    Point M, Gulhem G, Hug F, Nordez A, Frey A, Lacourpaille L. Cryotherapy induces an increase in muscle stiffness. Scand J Med Sci Sports. 2018;28:260266. PubMed ID: 28263409 doi:10.1111/sms.12872

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Bleakley C, Costello JT, Glasgow PD. Should athletes return to sport after applying ice: a systematic review of the effect of local cooling on functional performance. Sports Med. 2012;42:6987. PubMed ID: 22121908 doi:10.2165/11595970-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Bleakley CM, Glasgow PD, Philips P, et al. Guidelines for the management of acute soft tissue injury using protection, rest, ice, compression and elevation recommendations from the Association of Chartered Physiotherapists in Sports and Exercise Medicine (ACPSM). Physios Sport. 2011;1:121.

    • Search Google Scholar
    • Export Citation
  • 4.

    Furmanek MP, Slomka K, Slomka K, Sobiesiak A, Rzepko M, Juras G. The effects of cryotherapy on knee joint position sense and force production sense in healthy individuals. J Human Kinet. 2018;61:3951. doi:10.1515/hukin-2017-0106

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Bugaj R. The cooling, analgesic, and rewarming effects of ice massage on localized skin. Phys Ther. 1975;55:1119. PubMed ID: 1088989 doi:10.1093/ptj/55.1.11

  • 6.

    Knight KL. Cryotherapy in sports injury management. 1st ed. Champaign, IL: Human Kinetics; 1995.

  • 7.

    Algafly AA, George KP. The effect of cryotherapy on nerve conduction velocity, pain threshold and pain tolerance. Br J Sports Med. 2007;41:365369. PubMed ID: 17224445 doi:10.1136/bjsm.2006.031237

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Richendollar ML, Darby LA, Brown TM. Ice bag application, active warm-up, and 3 measures of maximal functional performance. J Athl Train. 2006;41:364370. PubMed ID: 17273459

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Larsen CC, Troiano JM, Ramirez RJ, Miller MG, Holcomb WR. Effects of crushed ice and wetted ice on hamstring flexibility. J Strength Con Res. 2015;29:483488. doi:10.1519/JSC.0000000000000340

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Merrick MA, Jutte LS, Smith ME. Cold modalities with different thermodynamic properties produce different surface and intramuscular temperatures. J Athl Train. 2003;1:2833.

    • Search Google Scholar
    • Export Citation
  • 11.

    Kennet J, Hardaker NJ, Hobbs SJ, Selfe J. Cooling efficiency of four common cryotherapeutic modalities. J Athl Train. 2007;42:343348. PubMed ID: 18059988

    • Search Google Scholar
    • Export Citation
  • 12.

    Hardaker N, Moss A, Richards J, Jarvis S, McEwan I, Selfe J. The relationship between skin surface temperatures measured via non-contact thermal imaging and intra-muscular temperature of the rectus femoris muscle. Therm Int. 2007;17:4550.

    • Search Google Scholar
    • Export Citation
  • 13.

    Dykstra JH, Hill HM, Miller MG, Cheatham CC, Michael TJ, Baker RJ. Comparisons of cubed ice, crushed ice and wetted ice on intramuscular and surface temperatures changes. J Athl Train. 2009;44:136141. PubMed ID: 19295957 doi:10.4085/1062-6050-44.2.136

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hunter EJ, Ostrowski J, Donahue M, Herzog V, Crowley C. Effect of salted ice bags on surface and intramuscular tissue cooling and rewarming rates. J Sports Rehabil. 2016;25:7076. doi:10.1123/jsr.2014-0289

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Cornwall MW. Effect of temperature on muscle force and rate of muscle force production in men and women. J Orthop Sports Phys Ther. 1994;20:7480. PubMed ID: 7920604 doi:10.2519/jospt.1994.20.2.74

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hopkins JT, Stencil R. Ankle cryotherapy facilitates soleus function. J Orthop Sports Phys Ther. 2002;32:622627. PubMed ID: 12492271 doi:10.2519/jospt.2002.32.12.622

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Pietrosimone BG, Ingersoll CD. Focal knee joint cooling increases the quadriceps central activation ratio. J Sports Sci. 2009;27:873879. PubMed ID: 19449251 doi:10.1080/02640410902929374

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Costello JT, McInerney CD, Bleakley CM, Selfe J, Donnelly AE. The use of thermal imaging in the assessing skin temperature following cryotherapy: a review. J Therm Biol. 2012;11:18.

    • Search Google Scholar
    • Export Citation
  • 19.

    Boerner E, Podbielska H. Application of thermal imaging to assess the superficial skin temperature distribution after local cryotherapy and ultrasound. J Therm Anal Calorim. 2018;131:20492055. doi:10.1007/s10973-017-6772-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Bleakley CM, Hopkins T. Is it possible to achieve optimal levels of tissue cooling in cryotherapy? Phys Ther Rev. 2010;15(4):344350. doi:10.1179/174328810X12786297204873

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Cankar K, Finderle Z. Gender differences in cutaneous vascular and autonomic nervous response to local cooling. Clin Auto Res. 2003;13:214220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    MacAuley D. Ice therapy: how good is the evidence? Int J Sports Med. 2001;22:379384. doi:10.1055/s-2001-15656

  • 23.

    Furmanek MP, Slomka K, Juras G. The effects of cryotherapy on proprioception system. BioMed Res Int. 2014;2014:114. doi:10.1155/2014/696397

  • 24.

    De Araujo Ribeiro Alvares JB, Rodrigues R, de Azevedo Franke R, et al. Inter-machine reliability of the Biodex and Cybex isokinetic dynamometers for knee flexor/extensor isometric, concentric and eccentric tests. Phys Ther Sport. 2015;16:5965. PubMed ID: 24913915 doi:10.1016/j.ptsp.2014.04.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Greig M. The influence of soccer-specific fatigue on peak isokinetic torque production of the knee flexors and extensors. Am J Sports Med. 2008;36:14031409. PubMed ID: 18326034 doi:10.1177/0363546508314413

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Greco CC, Da Silva WL, Camarda SR, Denadai BS. Fatigue and rapid hamstring/quadriceps force capacity in professional soccer players. Clin Physiol Funct Imag. 2013;33:1823. doi:10.1111/j.1475-097X.2012.01160.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Rhodes D, Alexander J. The effect of knee joint cooling on isokinetic torque production of the knee extensors: considerations for application. Int J Sports Phys Ther. 2018;13:985992. PubMed ID: 30534464 doi:10.26603/ijspt20180985

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    World Medical Association (WMA). Declaration of Helsinki. Retrieved from https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/

    • Search Google Scholar
    • Export Citation
  • 29.

    Surenkok O, Aytar A, Tuzun EH, Akman MN. Cryotherapy impairs knee joint position sense and balance. Isokin Exercise Sci. 2008;16:6973. doi:10.3233/IES-2008-0298

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Alexander J, Richards J, Attah O, et al. Delayed effects of a 20 min crushed ice application on knee joint position sense assessed by a functional task during a re-warming period. Gait Posture. 2018;62:173178. PubMed ID: 29554515 doi:10.1016/j.gaitpost.2018.03.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Cohen J. Statistical Power Analysis for the Behavioural Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.

  • 32.

    Palmieri-Smith RM, Leonard JL, Garrison JC, Weltman AL, Ingersoll CD. Peripheral joint cooling increases spinal reflex excitability and serum norepinephrine. Int J Neurosci. 2007;117:229242. PubMed ID: 17365110 doi:10.1080/00207450600582702

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Axman T, Esfeld S, Jackson C, Moore A, Quillin D, Wilson C. The effects of cryotherapy and hot-pack treatments on quadriceps femoris strength measured by an isokinetic machine. Grad Res Scholar Project. 2013;9:5152.

    • Search Google Scholar
    • Export Citation
  • 34.

    Schepers RJ, Ringkamp M. Thermoreceptors and thermosensitive afferents. Neuro Biobehav Rev. 2010;34, 177184. doi:10.1016/j.neubiorev.2009.10003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Shultz R, Silder A, Malone M, Braun HJ, Dragoo JL. Unstable surface improves quadriceps:hamstring co-contraction for anterior cruciate ligament injury prevention strategies. Sports Health. 2014;7:166171. doi:10.1177/1941738114565088

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Muraoka T, Omuro K, Wakahara T, et al. Effects of muscle cooling on the stiffness of the human gastrocnemius muscle in vivo. Cells Tissues Organs. 2007;187:152160. PubMed ID: 17938563 doi:10.1159/000109943

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Witvrouw E, Danneels L, Asselman P, D’Have T, Cambier D. Muscle flexibility as a risk factor for developing muscle injuries in male professional soccer players a prospective study. Am J Sports Med. 2003;31:4146. PubMed ID: 12531755 doi:10.1177/03635465030310011801

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Watsford ML, Murphy AJ, McLachlan KA, et al. A prospective study of the relationship between lower body stiffness and hamstring injury in professional Australian rules footballers. Am J Sports Med. 2010;38:20582064. PubMed ID: 20595555 doi:10.1177/0363546510370197

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Scott EE, Hamilton DF, Wallace RJ, Muir AY, Simpson AH. Increased risk of muscle tears below physiological temperature ranges. Bone Joint Res. 2016;5:6165. PubMed ID: 26883967 doi:10.1302/2046-3758.52.2000484

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 97 97 32
Full Text Views 7 7 1
PDF Downloads 5 5 1