Monopodal Postural Stability Assessment by Wireless Inertial Measurement Units Through the Fast Fourier Transform

in Journal of Sport Rehabilitation

Click name to view affiliation

José Pino-Ortega
Search for other papers by José Pino-Ortega in
Current site
Google Scholar
PubMed
Close
,
Alejandro Hernández-Belmonte
Search for other papers by Alejandro Hernández-Belmonte in
Current site
Google Scholar
PubMed
Close
,
Carlos D. Gómez-Carmona
Search for other papers by Carlos D. Gómez-Carmona in
Current site
Google Scholar
PubMed
Close
,
Alejandro Bastida-Castillo
Search for other papers by Alejandro Bastida-Castillo in
Current site
Google Scholar
PubMed
Close
,
Javier García-Rubio
Search for other papers by Javier García-Rubio in
Current site
Google Scholar
PubMed
Close
, and
Sergio J. Ibáñez
Search for other papers by Sergio J. Ibáñez in
Current site
Google Scholar
PubMed
Close
Restricted access

Objectives: (1) To describe the fast Fourier transform (FFT) multijoint as monopodal postural stability measurement in well-trained athletes, (2) to compare the within-subject FFT between laterality, joints, and body segments, and (3) to establish the within- and between-subject relationship between joints. Methods: Twelve national-level basketball players participated voluntarily in this investigation. The participants performed two 60-second repetitions of a monopodal stability test (1 repetition with each lower limb), separated by 3 minutes of active recovery. All tests were recorded by 4 WIMU PRO inertial devices located on the ankle, knee, lumbar spine, and thoracic spine. The main variable was total acceleration, where the FFT was applied. Results: The higher instability results were found in the ankle and in the nondominant lower limb (dominant = 1.131 [0.122] a.u. (arbitrary units); nondominant = 1.141 [0.172] a.u). In the body segment analysis, the greater percentage of differences (%diff) were shown between lumbar spine and knee in the dominant (%diff = −2.989%; d = 0.87) and nondominant (%diff = −3.243%; d = 0.90) lower limb. Finally, very large between-subjects variability was found in all joints and body segments. Conclusions: The described protocol is proposed for monopodal postural stability assessment, being useful to provide information about the stability of joints and the body segment between joints. Besides, a within-subject analysis is recommended, and the FFT calculation will enable a linear analysis of each test.

Pino-Ortega, Hernández-Belmonte, Gómez-Carmona, and Bastida-Castillo are with Departamento de Actividad Física y Deporte, Facultad de Ciencias del Deporte, Universidad de Murcia, Murcia, Spain. Gómez-Carmona, García-Rubio, and Ibáñez are with Grupo de Optimización del Entrenamiento y el Rendimiento Deportivo (GOERD), Departamento de Didáctica de la Expresión Musical, Plástica y Corporal, Facultad de Ciencias del Deporte, Universidad de Extremadura, Cáceres, Spain. García-Rubio is also with Facultad de Educación, Universidad Autónoma de Chile, Providencia, Chile.

Gómez-Carmona (cdgomezcarmona@unex.es) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Horak FB. Clinical assessment of balance disorders. Gait Posture. 1997;6(1):7684. doi:10.1016/S0966-6362(97)00018-0

  • 2.

    Iqbal K. Mechanisms and models of postural stability and control. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Boston, MA: IEEE; 2011:78377840.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Dionyssiotis Y. Analyzing the problem of falls among older people. Int J Gen Med. 2012;5:805813. PubMed ID: 23055770 doi:10.2147/IJGM.S32651

  • 4.

    Maki BE, Sibley KM, Jaglal SB, et al. Reducing fall risk by improving balance control: development, evaluation and knowledge-translation of new approaches. J Safety Res. 2011;42(6):473485. PubMed ID: 22152265 doi:10.1016/j.jsr.2011.02.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Linens SW, Ross SE, Arnold BL, Gayle R, Pidcoe P. Postural-stability tests that identify individuals with chronic ankle instability. J Athl Train. 2014;49(1):1523. PubMed ID: 24377958 doi:10.4085/1062-6050-48.6.09

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Negahban H, Ahmadi P, Salehi R, Mehravar M, Goharpey S. Attentional demands of postural control during single leg stance in patients with anterior cruciate ligament reconstruction. Neurosci Lett. 2013;556:118123. PubMed ID: 24157849 doi:10.1016/j.neulet.2013.10.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Paterno MV, Schmitt LC, Ford KR, Rauh MJ, Hewett TE. Altered postural sway persists after anterior cruciate ligament reconstruction and return to sport. Gait Posture. 2013;38(1):136140. PubMed ID: 23219783 doi:10.1016/j.gaitpost.2012.11.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Paillard T, Noé F. Techniques and methods for testing the postural function in healthy and pathological subjects. BioMed Res Int. 2015;2015:891390. PubMed ID: 26640800

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Patel SK, Shende ML, Khatri SM. MFT a new diagnostic tool to check the balance in a normal healthy individuals. IOSR J Dent Med Sci. 2013;5(6):1418. doi:10.9790/0853-0561418

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Goffredo M, Schmid M, Conforto S, D’Alessio T. A markerless sub-pixel motion estimation technique to reconstruct kinematics and estimate the centre of mass in posturography. Med Eng Phys. 2006;28(7):719726. PubMed ID: 16337420 doi:10.1016/j.medengphy.2005.10.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Günther M, Grimmer S, Siebert T, Blickhan R. All leg joints contribute to quiet human stance: a mechanical analysis. J Biomech. 2009;42(16):27392746. doi:10.1016/j.jbiomech.2009.08.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Kiefer AW, Riley MA, Shockley K, et al. Multi-segmental postural coordination in professional ballet dancers. Gait Posture. 2011;34(1):7680. PubMed ID: 21530267 doi:10.1016/j.gaitpost.2011.03.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Masani K, Vette AH, Abe MO, Nakazawa K. Center of pressure velocity reflects body acceleration rather than body velocity during quiet standing. Gait Posture. 2014;39(3):946952. PubMed ID: 24444652 doi:10.1016/j.gaitpost.2013.12.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Saito H, Yamanaka M, Kasahara S, Fukushima J. Relationship between improvements in motor performance and changes in anticipatory postural adjustments during whole-body reaching training. Hum Mov Sci. 2014;37:6986. PubMed ID: 25108269 doi:10.1016/j.humov.2014.07.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Fong DT-P, Chan Y-Y. The use of wearable inertial motion sensors in human lower limb biomechanics studies: a systematic review. Sensors. 2010;10(12):1155611565. PubMed ID: 22163542 doi:10.3390/s101211556

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Mancini M, Salarian A, Carlson-Kuhta P, et al. ISway: a sensitive, valid and reliable measure of postural control. J Neuroeng Rehabil. 2012;9(1):59. doi:10.1186/1743-0003-9-59

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Najafi B, Horn D, Marclay S, Crews RT, Wu S, Wrobel JSAssessing postural control and postural control strategy in diabetes patients using innovative and wearable technologyJ Diabetes Sci Technol2010; 4(4):780791.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Bastida Castillo A, Gómez Carmona CD, De la Cruz Sánchez E, Pino Ortega J. Accuracy, intra- and inter-unit reliability, and comparison between GPS and UWB-based position-tracking systems used for time–motion analyses in soccer. Eur J Sport Sci. 2018;18(4):450457. PubMed ID: 29385963 doi:10.1080/17461391.2018.1427796

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Federation Internationale Football Association. Law 4—The Player’s Equipment.Laws of the Game 2015-2016. Zurich, Switzerland: Federation Internationale Football Association; 2015: 70.

    • Search Google Scholar
    • Export Citation
  • 20.

    Algrøy EA, Hetlelid KJ, Seiler S, Pedersen JIS. Quantifying training intensity distribution in a group of Norwegian professional soccer players. Int J Sports Physiol Perform. 2011;6(1):7081. doi:10.1123/ijspp.6.1.70

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Andrzejewski M, Pluta B, Konefał M, Konarski J, Chmura J, Chmura P. Activity profile in elite Polish soccer players. Res Sports Med. 2018;14:112. doi:10.1080/15438627.2018.1545648

    • Search Google Scholar
    • Export Citation
  • 22.

    Buchheit M, Manouvrier C, Cassirame J, Morin J-B. Monitoring locomotor load in soccer: is metabolic power, powerful? Int J Sports Med. 2015;36(14):11491155. PubMed ID: 26393813 doi:10.1055/s-0035-1555927

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Buchheit M, Simpson BM. Player-tracking technology: half-full or half-empty glass? Int J Sports Physiol Perform. 2017;12(suppl 2):S235S241. doi:10.1123/ijspp.2016-0499

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Bastida Castillo A, Gómez Carmona CD, Pino Ortega J, de la Cruz Sánchez E. Validity of an inertial system to measure sprint time and sport task time: a proposal for the integration of photocells in an inertial system. Int J Perform Anal Sport. 2017;17(1):19.

    • Search Google Scholar
    • Export Citation
  • 25.

    Bastida Castillo A, Gómez-Carmona CD, Pino Ortega J. Efectos del Tipo de Recuperación Sobre la Oxigenación Muscular Durante el Ejercicio de Sentadilla. Kronos. 2016;15(2). https://g-se.com/efectos-del-tipo-de-recuperacion-sobre-la-oxigenacion-muscular-durante-el-ejercicio-de-sentadilla-2197-sa-h585d504674b3e

    • Search Google Scholar
    • Export Citation
  • 26.

    Neville C, Ludlow C, Rieger B. Measuring postural stability with an inertial sensor: validity and sensitivity. Med Devices Evid Res. 2015;8:447455. doi:10.2147/MDER.S91719

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Alberts JL, Hirsch JR, Koop MM, et al. Using accelerometer and gyroscopic measures to quantify postural stability. J Athl Train. 2015;50(6):578588. PubMed ID: 25844853 doi:10.4085/1062-6050-50.2.01

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Nedergaard NJ, Robinson MA, Eusterwiemann E, Drust B, Lisboa PJ, Vanrenterghem J. The relationship between whole-body external loading and body-worn accelerometry during team-sport movements. Int J Sports Physiol Perform. 2017;12(1):1826. PubMed ID: 27002795 doi:10.1123/ijspp.2015-0712

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Leirós-Rodríguez R, Arce ME, Míguez-Álvarez C, García-Soidán JL. Definition of the proper placement point for balance assessment with accelerometers in older women [published online ahead of print October 21, 2016]. Rev Andal Med Deporte.

    • Search Google Scholar
    • Export Citation
  • 30.

    Leirós-Rodríguez R, Arce ME, Souto-Gestal A, García-Soidán JL. Identificación de puntos de referencia anatómicos para la valoración del equilibrio mediante dispositivos cinemáticos. Fisioterapia. 2015;37(5):223229. doi:10.1016/j.ft.2014.10.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Leirós-Rodríguez R, Romo-Pérez V, García-Soidán JL. Validity and reliability of a tool for accelerometric assessment of static balance in women. Eur J Physiother. 2017;19(4):243248. doi:10.1080/21679169.2017.1347707

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Mathie MJ, Coster ACF, Lovell NH, Celler BG. Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiol Meas. 2004;25(2):R1R20. PubMed ID: 15132305 doi:10.1088/0967-3334/25/2/R01

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Preece SJ, Goulermas JY, Kenney LPJ, Howard D, Meijer K, Crompton R. Activity identification using body-mounted sensors--a review of classification techniques. Physiol Meas. 2009;30(4):R1R33. PubMed ID: 19342767 doi:10.1088/0967-3334/30/4/R01

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Taraldsen K, Chastin SFM, Riphagen II, Vereijken B, Helbostad JL. Physical activity monitoring by use of accelerometer-based body-worn sensors in older adults: a systematic literature review of current knowledge and applications. Maturitas. 2012;71(1):1319. PubMed ID: 22134002 doi:10.1016/j.maturitas.2011.11.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA. 1991;88(6):22972301. PubMed ID: 11607165 doi:10.1073/pnas.88.6.2297

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Bastida-Castillo A, Gomez-Carmona CD, Reche P, Granero-Gil P, Pino-Ortega J. Valoración de la estabilidad del tronco mediante un dispositivo inercial. Retos Nuevas Tend En Educ Física Deport Recreación. 2018;33:199203.

    • Search Google Scholar
    • Export Citation
  • 37.

    Manso JMG. Aplicación de la variabilidad de la frecuencia cardiaca al control del entrenamiento deportivo: análisis en modo frecuencia. Arch Med Deporte. 2013;30(1):4351.

    • Search Google Scholar
    • Export Citation
  • 38.

    Kelly JS, Metcalfe J. Validity and reliability of body composition analysis using the Tanita BC418-MA. J Exerc Physiol. 2012;15(6):7483.

    • Search Google Scholar
    • Export Citation
  • 39.

    Takeda R, Tadano S, Todoh M, Morikawa M, Nakayasu M, Yoshinari S. Gait analysis using gravitational acceleration measured by wearable sensors. J Biomech. 2009;42(3):223233. PubMed ID: 19121522 doi:10.1016/j.jbiomech.2008.10.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Goodworth A, Perrone K, Pillsbury M, Yargeau M. Effects of visual focus and gait speed on walking balance in the frontal plane. Hum Mov Sci. 2015;42:1526. PubMed ID: 25918828 doi:10.1016/j.humov.2015.04.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Gómez-Carmona CD, Bastida-Castillo A, García-Rubio J, Ibáñez SJ, Pino-Ortega J. Static and dynamic reliability of WIMU PRO accelerometers according to anatomical placement [published online ahead of print December 13, 2018]. Proc Inst Mech Eng Part P J Sports Eng Technol.

    • Search Google Scholar
    • Export Citation
  • 42.

    Boyd LJ, Ball K, Aughey RJ. The reliability of MinimaxX accelerometers for measuring physical activity in Australian football. Int J Sports Physiol Perform. 2011;6(3):311321. PubMed ID: 21911857 doi:10.1123/ijspp.6.3.311

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Waldron M, Twist C, Highton J, Worsfold P, Daniels M. Movement and physiological match demands of elite rugby league using portable global positioning systems. J Sports Sci. 2011;29(11):12231230. PubMed ID: 21774752 doi:10.1080/02640414.2011.587445

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Kunze K, Bahle G, Lukowicz P, Partridge K. Can magnetic field sensors replace gyroscopes in wearable sensing applications? In: 2010 International Symposium On Wearable Computers (ISWC). COEX, Seoul, South Korea: IEEE; 2010:14.

    • Search Google Scholar
    • Export Citation
  • 45.

    O’Donovan KJ, Kamnik R, O’Keeffe DT, Lyons GM. An inertial and magnetic sensor based technique for joint angle measurement. J Biomech. 2007;40(12):26042611. doi:10.1016/j.jbiomech.2006.12.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Weir A, Darby J, Inklaar H, Koes B, Bakker E, Tol JL. Core stability: inter- and intraobserver reliability of 6 clinical tests. Clin J Sport Med. 2010;20(1):3438. PubMed ID: 20051732 doi:10.1097/JSM.0b013e3181cae924

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Field A. Discovering Statistics Using IBM SPSS Statistics. 4th ed. London, UK: Sage; 2013.

  • 48.

    Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20(1):3746. doi:10.1177/001316446002000104

  • 49.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Ibáñez SJ, González-Espinosa S, Feu, S, García-Rubio J. Basketball without borders? Similarities and differences among Continental Basketball Championships. [¿Baloncesto sin fronteras? Similitudes y diferencias entre los Campeonatos Continentales de baloncesto]. RICYDE Rev Int Cienc Deporte. 2017;14(51):4254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Shafizadeh M, Taylor M, Peñas CL. Performance consistency of international soccer teams in euro 2012: a time series analysis. J Hum Kinet. 2013;38:213226. PubMed ID: 24235996 doi:10.2478/hukin-2013-0061

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Alonso AC, Brech GC, Bourquin AM, Greve JMD. The influence of lower-limb dominance on postural balance. Sao Paulo Med J. 2011;129(6):410413. PubMed ID: 22249797 doi:10.1590/S1516-31802011000600007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Cug M, Ozdemir RA, Ak E. Influence of leg dominance on single-leg stance performance during dynamic conditions: an investigation into the validity of symmetry hypothesis for dynamic postural control in healthy individuals. Türkiye Fiz Tip Ve Rehabil Derg. 2014;60(1):2226. PubMed ID: 5308717

    • Search Google Scholar
    • Export Citation
  • 54.

    McCurdy K, Langford G. The relationship between maximum unilateral squat strength and balance in young adult men and women. J Sport Sci Med. 2006;5:282288.

    • Search Google Scholar
    • Export Citation
  • 55.

    Barone R, Macaluso F, Traina M, Farina F, Di Felice V. Soccer players have a better standing balance in nondominant one-legged stance. Open Access J Sports Med. 2011;2:16.

    • Search Google Scholar
    • Export Citation
  • 56.

    Melzer I, Benjuya N, Kaplanski J. Postural stability in the elderly: a comparison between fallers and non-fallers. Age Ageing. 2004;33(6):602607. PubMed ID: 15501837 doi:10.1093/ageing/afh218

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Hrysomallis C. Relationship between balance ability, training and sports injury risk. Sports Med. 2007;37(6):547556. PubMed ID: 17503879 doi:10.2165/00007256-200737060-00007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Tropp H, Ekstrand J, Gillquist J. Stabilometry in functional instability of the ankle and its value in predicting injury. Med Sci Sports Exerc. 1984;16(1):6466. PubMed ID: 6708781 doi:10.1249/00005768-198401000-00013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Watson AW. Ankle sprains in players of the field-games Gaelic football and hurling. J Sports Med Phys Fitness. 1999;39(1):6670. PubMed ID: 10230172

  • 60.

    McGuine TA, Greene JJ, Best T, Leverson G. Balance as a predictor of ankle injuries in high school basketball players. Clin J Sport Med. 2000;10(4):239244. doi:10.1097/00042752-200010000-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Moe-Nilssen R. A new method for evaluating motor control in gait under real-life environmental conditions. Part 2: gait analysis. Clin Biomech. 1998;13(4–5):328335. doi:10.1016/S0268-0033(98)00090-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Moe-Nilssen R. Test-retest reliability of trunk accelerometry during standing and walking. Arch Phys Med Rehabil. 1998;79(11):13771385. PubMed ID: 9821897 doi:10.1016/S0003-9993(98)90231-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Izquierdo M. Biomecánica y Bases Neuromusculares de la Actividad Física y el Deporte. Madrid, Spain: Editorial Médica Panamericana; 2008.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1935 864 50
Full Text Views 11 0 0
PDF Downloads 12 1 0