Performance Differences Between the Modified Star Excursion Balance Test and the Y-Balance Test in Individuals With Chronic Ankle Instability

in Journal of Sport Rehabilitation
Restricted access

Context: The modified Star Excursion Balance Test (mSEBT) and Y-Balance Test (YBT) are common dynamic postural stability assessments for individuals with chronic ankle instability (CAI). However, the reach distance measurement technique and movement strategy used during the mSEBT and YBT differ. To date, no studies have compared task performance differences on these tests in CAI patients. Objective: To determine whether individuals with CAI perform the mSEBT and YBT differently. Design: Cross-sectional. Setting: Biomechanics laboratory. Participants: Of 97 consented participants, 86 (43 females, 43 males; age 21.5 [3.3] y, height 169.8 [10.3] cm, mass 69.5 [13.4] kg), who reported ≤25 on the Cumberland Ankle Instability Tool, ≥11 on the Identification of Functional Ankle Instability, and had a history of a moderate to severe ankle sprain(s) participated. Interventions: Participants were instructed to perform the mSEBT and YBT in a predetermined counterbalanced order. Three anterior, posteromedial, and posterolateral trials of each test were completed on the involved limb after 4 practice trials. Test direction order was randomized for each participant. Main Outcome Measures: Normalized (expressed in percentage) reach distance in each direction. Paired sample t tests were performed to compare each of the 3 directions between the mSEBT and YBT. Results: Significantly shorter reach distances in the anterior (58.9% [5.8%] vs 61.4% [5.4%], P = .001) and the posteromedial (98.8% [8.6%] vs 100.8% [8.1%], P = .003) directions were noted on the mSEBT relative to the YBT. No differences in the posterolateral directions were observed. Conclusions: Within those with CAI, mSEBT and YBT normalized reach distances differ in the anterior and posteriomedial directions. As a result, clinicians and researchers should not directly compare the results of these tests.

Ko is with Incheon National University, Incheon, Republic of Korea. Wikstrom is with the University of North Carolina at Chapel Hill, Chapel Hill, NC. Li is with California State University, Chico, Chico, CA. Weber is with the University of Georgia, Athens, GA. Brown is with Oregon State University, Corvallis, OR.

Ko (jpko@inu.ac.kr) is corresponding author.
  • 1.

    Gribble PA, Delahunt E, Bleakley C, et al. Selection criteria for patients with chronic ankle instability in controlled research: a position statement of the international ankle consortium. J Orthop Sports Phys Ther. 2013;43(8):585591. PubMed ID: 23902805 doi:10.2519/jospt.2013.0303

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Ko J, Rosen AB, Brown CN. Comparison between single and combined clinical postural stability tests in individuals with and without chronic ankle instability. Clin J Sport Med. 2017;27(4):394399. PubMed ID: 27347871 doi:10.1097/JSM.0000000000000354

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Kinzey SJ, Armstrong CW. The reliability of the star-excursion test in assessing dynamic balance. J Orthop Sports Phys Ther. 1998;27(5):356360. PubMed ID: 9580895 doi:10.2519/jospt.1998.27.5.356

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hertel J, Braham R, Hale S, Olmsted Kramer L. Simplifying the star excursion balance test: analyses of subjects with and without chronic ankle instability. J Orthop Sports Phys Ther. 2006;36(3):131137. PubMed ID: 16596889 doi:10.2519/jospt.2006.36.3.131

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Plisky PJ, Gorman PP, Butler RJ, Kiesel KB, Underwood FB, Elkins B. The reliability of an instrumented device for measuring components of the star excursion balance test. N Am J Sports Phys Ther. 2009;4(2):9299. PubMed ID: 21509114

    • Search Google Scholar
    • Export Citation
  • 6.

    Plisky P, Rauh M, Kaminski T, Underwood F. Star excursion balance test as a predictor of lower extremity injury in high school basketball players. J Orthop Sports Phys Ther. 2006;36(12):911919. PubMed ID: 17193868 doi:10.2519/jospt.2006.2244

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Olmsted LC, Carcia CR, Hertel J, Shultz SJ. Efficacy of the star excursion balance tests in detecting reach deficits in subjects with chronic ankle instability. J Athl Train. 2002;37(4):501506. PubMed ID: 12937574

    • Search Google Scholar
    • Export Citation
  • 8.

    Robinson RH, Gribble PA. Support for a reduction in the number of trials needed for the star excursion balance test. Arch Phys Med Rehabil. 2008;89(2):364370. PubMed ID: 18226664 doi:10.1016/j.apmr.2007.08.139

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Hyong IH, Kim JH. Test of intrarater and interrater reliability for the star excursion balance test. J Phys Ther Sci. 2014;26(8):11391141. PubMed ID: 25202168 doi:10.1589/jpts.26.1139

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Shaffer SW, Teyhen DS, Lorenson CL, et al. Y-balance test: a reliability study involving multiple raters. Mil Med. 2013;178(11):12641270. PubMed ID: 24183777 doi:10.7205/MILMED-D-13-00222

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Coughlan GF, Fullam K, Delahunt E, Gissane C, Caulfield BM, Sci M. A comparison between performance on selected directions of the star excursion balance test and the Y balance test. J Athl Train. 2012;47(4):366371. PubMed ID: 22889651 doi:10.4085/1062-6050-47.4.03

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Fullam K, Caulfield B, Coughlan GF, Delahunt E. Kinematic analysis of selected reach directions of the star excursion balance test compared with the y-balance test. J Sport Rehabil. 2014;23(1):2735. PubMed ID: 23945793 doi:10.1123/JSR.2012-0114

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Gribble PA, Hertel J, Plisky P. Using the star excursion balance test to assess dynamic postural-control deficits and outcomes in lower extremity injury: a literature and systematic review. J Athl Train. 2012;47(3):339357. PubMed ID: 22892416 doi:10.4085/1062-6050-47.3.08

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Linens SW, Ross SE, Arnold BL, Gayle R, Pidcoe P. Postural-stability tests that identify individuals with chronic ankle instability. J Athl Train. 2014;49(1):1523. PubMed ID: 24377958 doi:10.4085/1062-6050-48.6.09

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    de la Motte S, Arnold BL, Ross SE. Trunk-rotation differences at maximal reach of the star excursion balance test in participants with chronic ankle instability. J Athl Train. 2015;50(4):358365. PubMed ID: 25531142 doi:10.4085/1062-6050-49.3.74

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Hiller CE, Refshauge KM, Bundy AC, Herbert RD, Kilbreath SL. The Cumberland ankle instability tool: a report of validity and reliability testing. Arch Phys Med Rehabil. 2006;87(9):12351241. PubMed ID: 16935061 doi:10.1016/j.apmr.2006.05.022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Wright CJ, Arnold BL, Ross SE, Linens SW. Recalibration and validation of the Cumberland Ankle Instability Tool cutoff score for individuals with chronic ankle instability. Arch Phys Med Rehabil. 2014;95(10):18531859. PubMed ID: 24814563 doi:10.1016/j.apmr.2014.04.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Simon J, Donahue M, Docherty C. Development of the identification of functional ankle instability (IdFAI). Foot Ankle Int. 2012;33(9):755763. PubMed ID: 22995264 doi:10.3113/FAI.2012.0755

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Pietrosimone BG, Gribble PA. Chronic ankle instability and corticomotor excitability of the fibularis longus muscle. J Athl Train. 2012;47(6):621626. PubMed ID: 23182009 doi:10.4085/1062-6050-47.6.11

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Cug M. Stance foot alignment and hand positioning alter star excursion balance test scores in those with chronic ankle instability: what are we really assessing? Physiother Theory Pract. 2017;33(4):316322. doi:10.1080/09593985.2017.1302028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Gribble PA. Considerations for normalizing measures of the star excursion balance test. Meas Phys Educ Exerc Sci. 2003;7(2):89100. doi:10.1207/S15327841MPEE0702_3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Hertel J. Intratester and intertester reliability during the star excursion balance tests. J Sport Rehabil. 2000;9(pt 2):104116. doi:10.1123/jsr.9.2.104

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: L. Erlbaum Associates; 1988.

  • 24.

    Lomax RG. Statistical Concepts: A Second Course for Education and the Behavioral Sciences. Mahwah, NJ: L. Erlbaum Associates; 1998.

  • 25.

    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307310. doi:10.1016/S0140-6736(86)90837-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kandel ER. Principles of Neural Science. 5th ed. New York, NY: McGraw-Hill Education; 2013.

  • 27.

    Lephart SM, Pincivero DM, Giraido JL, Fu FH. The role of proprioception in the management and rehabilitation of athletic injuries. Am J Sports Med. 1997;25(1):130137. PubMed ID: 9006708 doi:10.1177/036354659702500126

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Dietz V. Human neuronal control of automatic functional movements: interaction between central programs and afferent input. Physiol Rev. 1992;72(1):3369. PubMed ID: 1731372 doi:10.1152/physrev.1992.72.1.33

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Riemann BL, Lephart SM. The sensorimotor system, Part II: the role of proprioception in motor control and functional joint stability. J Athl Train. 2002;37(1):8084. PubMed ID: 16558671

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Hertel J. Sensorimotor deficits with ankle sprains and chronic ankle instability. Clin Sports Med. 2008;27(3):353370. PubMed ID: 18503872 doi:10.1016/j.csm.2008.03.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Holmes A, Delahunt E. Treatment of common deficits associated with chronic ankle instability. Sports Med. 2009;39(3):207224. PubMed ID: 19290676 doi:10.2165/00007256-200939030-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Wulf G, Shea C, Lewthwaite R. Motor skill learning and performance: a review of influential factors. Med Educ. 2010;44(1):7584. PubMed ID: 20078758 doi:10.1111/j.1365-2923.2009.03421.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Ko J. Comparison kinematic patterns between the star excursion balance test and Y-balance test in elite athletes. Korea J Sport Biomech. 2017;27(3):165169. doi:10.5103/KJSB.2017.27.3.165

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4570 2240 256
Full Text Views 285 36 3
PDF Downloads 219 54 2