Comparison of Regional Hamstrings Activation During Resistance Exercises in Females With Prior Athletic Experience

in Journal of Sport Rehabilitation
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Within each hamstring muscle, there are segments with separate nerve innervation. However, a better understanding of activation levels within these regions during resistance exercise could lead to region-specific training for improved performance and injury prevention. Objective: To compare muscle activation levels within regions of the hamstrings during various resistance exercises. Design: Within-subjects repeated measures. Setting: Biomechanics laboratory. Participants: Eighteen young adult females with previous competitive sport participation and resistance training experience. Intervention: One set of 3 repetitions with an 8RM load on the bilateral squat, modified single-leg squat, stiff-legged dead lift, and leg curl (LC). Main Outcome Measures: Normalized surface electromyography of 4 hamstring regions (proximal-medial, proximal-lateral, distal-medial, and distal-lateral). Results: For LC only, electromyography measures for the proximal-lateral location were significantly lower than for the distal-lateral, t18 = 5.6, P < .001, and proximal-medial, t18 = 2.4, P = .01 locations for concentric contractions. Similar results were observed for eccentric contractions. No other exercises revealed regional activation differences. When comparing the pooled proximal (medial and lateral) region across exercises, the LC demonstrated significantly greater activation than the modified single-leg squat, t18 = 5.20, P < .001, stiff-legged dead lift, t18 = 7.311, P < .001, and bilateral squat, F3,54 = 49.8, P < .001. Similar significantly greater levels were also found during the LC for the pooled distal, medial, and lateral regions. In addition, the modified single-leg squat electromyography was significantly greater at all regions in comparison with the stiff-legged dead lift and bilateral squat. Conclusions: The data did not reveal consistent regional differences within the different exercises included in this study. However, the data indicate that the LC produces the highest hamstring activation in all regions across exercises. Inclusion of single-joint knee-flexion exercises would appear to be most beneficial for hamstrings development in a resistance-training program.

The authors are with Texas State University, San Marcos, TX.

McCurdy (km55@txstate.edu) is corresponding author.
  • 1.

    Kang S, Jeon H, Kwon O, Cynn H, Choi B. Activation of the gluteus maximus and hamstring muscles during prone hip extension with knee flexion in three hip abduction positions. Man Ther. 2013;18:303307. PubMed ID: 23312068 doi:10.1016/j.math.2012.11.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Wright GA, DeLong TH, Gehlsen G. Electromyographic activity of the hamstrings during performance of the leg curl, stiff-leg deadlift, and back squat movements. J Strength Cond Res. 1999;13(2):168174.

    • Search Google Scholar
    • Export Citation
  • 3.

    Ono T, Okuwaki T, Fukubayashi T. Differences in activation patterns of knee flexor muscles during concentric and eccentric exercises. Res Sports Med. 2010;18:188198. PubMed ID: 20623435 doi:10.1080/15438627.2010.490185

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Schoenfeld BJ, Contreras B, Tiryaki-Sonmez G, Wilson JM, Kolber MJ, Peterson MD. Regional differences in muscle activation during hamstrings exercise. J Strength Cond Res. 2015;29(1):159164. PubMed ID: 24978835 doi:10.1519/JSC.0000000000000598

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bergin MJ, Vicenzino B, Hodges PW. Functional differences between anatomical regions of the anconeus muscle in humans. J Electromyogr Kinesiol. 2013;23(6):13911397. PubMed ID: 24060388 doi:10.1016/j.jelekin.2013.08.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Brown JM, Wickham J. Neuromotor coordination of multisegmental muscle during a change in movement direction. J Musculoskelet Res. 2006;10(2):6374. doi:10.1142/S0218957706001716

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Brown JM, Wickham JB, McAndrew DJ, Huang XF. Muscles within muscles: coordination of 19 muscle segments within 3 shoulder muscles during isometric motor tasks. J Electrmyogr Kinesiol. 2007;17:5773. doi:10.1016/j.jelekin.2005.10.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Hagio S, Nagata K, Kouzaki M. Region specificity of rectus femoris muscle for force vectors in vivo. J Biomech. 2012;45:179182. PubMed ID: 22030124 doi:10.1016/j.jbiomech.2011.10.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Omi R, Sano H, Ohnuma M, et al. Function of the shoulder muscles during arm elevation: an assessment using positron emission tomography. J Anat. 2010;216(5):643649. PubMed ID: 20298439 doi:10.1111/j.1469-7580.2010.01212.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    O’Sullivan K, Smith SM, Sainsbury D. Electromyographic analysis of the three subdivisions of the gluteus medius during weight-bearing exercises. Sports Med Arthrosc Rehabil Ther Technol. 2010;2:1725.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    McAndrew D, Gorelick M, Brown JM. Muscles within muscles: a mechanomyographic analysis of muscle segment contractile properties within human gluteus maximus. J Musculoskelet Res. 2006;10(1):2335. doi:10.1142/S0218957706001704

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Woodley SJ, Mercer SR. Hamstring muscles: architecture and innervation. Cells Tissues Organs. 2005;179:125141. PubMed ID: 15947463 doi:10.1159/000085004

  • 13.

    Hayashi A, Maruyama Y. Lateral inter-muscular septum of the thigh and short head of the biceps femoris muscle: an anatomic investigation with new clinical applications. Plast Reconstr Surg. 2001;108:16461654. PubMed ID: 11711941 doi:10.1097/00006534-200111000-00032

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Seidel PM, Seidel GK, Gans BM, Dijkers M. Precise localization of the motor nerve branches to the hamstring muscles: an aid to the conduct of neurolytic procedures. Arch Phys Med Rehabil. 1996;77:11571160. PubMed ID: 8931528 doi:10.1016/S0003-9993(96)90140-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    McCurdy K, O’Kelley E, Kutz M, Langford G, Ernest J, Torres M. Comparison of lower extremity EMG between the 2-leg squat and modified single-leg squat in female athletes. J Sport Rehabil. 2010;19:5770. PubMed ID: 20231745 doi:10.1123/jsr.19.1.57

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Blackburn J, Norcross M, Cannon L, Zinder S. Hamstrings stiffness and landing biomechanics linked to ACL loading. J Athl Train. 2013;48(6):764772. PubMed ID: 24303987 doi:10.4085/1062-6050-48.4.01

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Greig M. Concurrent changes in eccentric hamstring strength and knee joint kinematics induced by soccer specific fatigue. Phys Ther Sport. 2019;37:2126. PubMed ID: 30802762 doi:10.1016/j.ptsp.2019.02.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Palmieri-Smith R, McLean S, Ashton-Miller J, Woitys E. Association of quadriceps and hamstrings cocontraction patterns with knee joint loading. J Athl Train. 2009;44(3):256263. PubMed ID: 19478837 doi:10.4085/1062-6050-44.3.256

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Dolman B, Verrall G, Reid I. Physical principles demonstrate that the biceps femoris muscle relative to the other hamstring muscles exerts the most force: implications for hamstring muscle strain injuries. Muscles Ligaments Tendons J. 2014;4(3):371377. PubMed ID: 25506583

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Lempainen L, Sarimo J, Mattila K, Heikkila J, Orava S, Puddu G. Distal tears of the hamstring muscles: review of the literature and our results of surgical treatment. Br J Sports Med. 2007;41(2):8083. PubMed ID: 17138628 doi:10.1136/bjsm.2006.031211

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Worrell T, Karst G, Adamczyk D, et al. Influence of joint position on electromyographic and torque generation during maximal voluntary isometric contractions of the hamstrings and gluteus maximus muscles. J Orthop Sports Phys Ther. 2001;31:730740. PubMed ID: 11767248 doi:10.2519/jospt.2001.31.12.730

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Mendiguchia J, Garrues MA, Cronin JB, et al. Nonuniform changes in MRI measurements of the thigh muscles after two hamstring strengthening exercises. J Strength Cond Res. 2013;27(3):574581. PubMed ID: 23443215 doi:10.1519/JSC.0b013e31825c2f38

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Kubota J, Ono T, Araki M, Torii S, Okuwaki T, Fukubayashi T. Non-uniform changes in magnetic resonance measurements of the semitendinosus muscle following intensive eccentric exercise. Eur J Appl Physiol. 2007;101:713720. PubMed ID: 17724609 doi:10.1007/s00421-007-0549-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Ebben W, Fauth M, Petushek E, et al. Gender-based analysis of hamstring and quadriceps muscle activation during jump landings and cutting. J Strength Cond Res. 2010;24:408415. PubMed ID: 20124793 doi:10.1519/JSC.0b013e3181c509f4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Nagano Y, Hirofumi I, Akai M, Fukubayashi T. Gender differences in knee kinematics and muscle activity during single limb drop landing. Knee. 2007;14:218223. PubMed ID: 17215126 doi:10.1016/j.knee.2006.11.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Houck F. Muscle activation patterns of selected lower extremity muscles during stepping and cutting tasks. J Electromyogr Kinesiol. 2003;13:545554. PubMed ID: 14573369 doi:10.1016/S1050-6411(03)00056-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Askling C, Tengvar M, Saartok T, Thorstensson A. Acute first-time hamstring strains during slow-speed stretching: clinical, magnetic resonance imaging, and recovery characteristics. Am J Sports Med. 2007;35(2):197206. PubMed ID: 17170160 doi:10.1177/0363546506294679

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    McAllister MJ, Hammond KG, Schilling BK, Ferreria LC, Reed JP, Weiss LW. Muscle activation during various hamstring exercises. J Strength Cond Res. 2014;28(6):15731580. PubMed ID: 24149748 doi:10.1519/JSC.0000000000000302

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Youdas JW, Hollman JH, Hitchcock JR, Hoyme GJ, Johnsen JJ. Comparison of hamstring and quadriceps femoris electromyographic activity between men and women during a stable single-limb squat on both a stable and labile surface. J Strength Cond Res. 2007;21(1):105111. PubMed ID: 17313276 doi:10.1519/00124278-200702000-00020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Caterisano A, Moss R, Pellinger T, et al. The effect of back squat depth on EMG activity of 4 superficial hip and thigh muscles. J Strength Cond Res. 2002;16:428432. PubMed ID: 12173958

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Weiss L, Coney H, Clark F. Gross measures of exercise-induced muscular hypertrophy. J Orthop Sports Phys Ther. 2000;30:143148. PubMed ID: 10721510 doi:10.2519/jospt.2000.30.3.143

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Sun Y, Wei S, Zhong Y, Fu W, Li L, Liu Y. How joint torques affect hamstring injury risk in sprinting swing-stance transition. Med Sci Sports Exerc. 2015;47(2):373380. PubMed ID: 24911288 doi:10.1249/MSS.0000000000000404

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 105 105 24
Full Text Views 8 8 1
PDF Downloads 6 6 1