Changes in Knee and Trunk Alignment in People With Hip Pain and Healthy Controls When Using a Decline Board During Single-Leg Squat

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Hip pain is associated with reduced hip muscle strength, range of movement (ROM), and decreased postural stability. Single-leg squat is a reliable and valid method to measure dynamic balance. Objective: To evaluate the influence of physical characteristics and use of a decline board on squat performance in a hip pain population. Design: Cross-sectional study setting. Clinical Patients: In total, 33 individuals scheduled for arthroscopic hip surgery were matched with 33 healthy controls. Interventions: Hip and ankle ROM, hip strength, and trunk endurance were assessed, along with knee and trunk kinematics during squat on flat and 25° decline surfaces. Main Outcome Measures: Between-group and surface differences in alignment, between-group strength and ROM, and associations between alignment and physical characteristics were assessed and determined using mixed model analysis of variance and Pearson R. Results: The hip pain group had significantly less strength and ROM for all directions except abduction strength and ankle dorsiflexion (P > .02). No differences existed between the 2 groups for trunk (P < .70) or knee displacement (P < .46) during squat on either surface. When the 2 groups were combined (n = 66), decline squat significantly reduced knee medial displacement in both limbs by approximately 1 cm (P < .01). Decline squat reduced trunk lateral movement on 1 side only (P = .03). Reduced knee displacement during decline squat showed fair association with less hip-extension strength (r = −.29), hip-flexion strength (r = −.25), and less dorsiflexion (r = −.24). Strength and range were not associated with trunk displacement. Conclusions: Decline squat reduced medial knee and lateral trunk displacement regardless of hip pain. Reductions may be greater in those with lesser hip muscle strength and dorsiflexion. Use of a decline board during squat for improving knee and trunk alignment should be considered as a goal of exercise intervention.

Freke is with the Physiotherapy Department, Enoggera Health Centre, Gallipoli Barracks, Brisbane, QLD, Australia. Crossley and Semciw are with the School of Allied Health, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia. Freke, Sims, Russell, and Semciw are with the School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia. Sims is also with the Physiotherapy Department, Cricket Australia.

Freke (matthew.freke@uqconnect.edu.au) is corresponding author.
  • 1.

    Kemp JL, Schache AG, Makdissia M, Pritchard MG, Sims K, Crossley KM. Is hip range of motion and strength impaired in people with hip chondrolabral pathology? J Musculoskelet Neuronal Interact. 2014;14(3):334342. PubMed ID: 25198229

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Freke MD, Kemp J, Svege I, Risberg MA, Semciw A, Crossley KM. Physical impairments in symptomatic femoroacetabular impingement: a systematic review of the evidence. Br J Sports Med. 2016;50(19):1180. PubMed ID: 27301577 doi:10.1136/bjsports-2016-096152

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Freke M, Kemp J, Semciw A, et al. Hip strength and range of movement are associated with dynamic postural control performance in individuals scheduled for arthroscopic hip surgery. J Orthop Sports Phys Ther. 2018;48(4):280288. PubMed ID: 29607762 doi:10.2519/jospt.2018.7946

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hatton AL, Kemp JL, Brauer SG, Clark RA, Crossley KM. Impairment of dynamic single-leg balance performance in individuals with hip chondropathy. Arthritis Care Res. 2014;66(5):709716. doi:10.1002/acr.22193

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    King MG, Lawrenson PR, Semciw AI, Middleton KJ, Crossley KM. Lower limb biomechanics in femoroacetabular impingement syndrome: a systematic review and meta-analysis. Br J Sports Med. 2018;52(9):566580. PubMed ID: 29439949 doi:10.1136/bjsports-2017-097839

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Eitzen I, Fernandes L, Nordsletten L, Risberg MA. Sagittal plane gait characteristics in hip osteoarthritis patients with mild to moderate symptoms compared to healthy controls: a cross-sectional study. BMC Musculoskelet Disord. 2012;13(1):258258. doi:10.1186/1471-2474-13-258

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Crossley KM, Zhang WJ, Schache AG, Bryant A, Cowan SM. Performance on the single-leg squat task indicates hip abductor muscle function. Am J Sports Med. 2011;39(4):866873. PubMed ID: 21335344 doi:10.1177/0363546510395456

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Khuu A, Foch E, Lewis CL. Not all single leg squats are equal: a biomechanical comparison of three variations. Int J Sports Phys Ther. 2016;11(2):201211. PubMed ID: 27104053

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Wyndow N, De Jong A, Rial K, et al. The relationship of foot and ankle mobility to the frontal plane projection angle in asymptomatic adults. J Foot Ankle Res. 2016;9:3. PubMed ID: 26816531 doi:10.1186/s13047-016-0134-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Mauntel TC, Begalle RL, Cram TR, et al. The effects of lower extremity muscle activation and passive range of motion on single leg squat performance. J Strength Cond Res. 2013;27(7):18131823. PubMed ID: 23096063 doi:10.1519/JSC.0b013e318276b886

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Stickler L, Finley M, Gulgin H. Relationship between hip and core strength and frontal plane alignment during a single leg squat. Phys Ther Sport. 2015;16(1):6671. PubMed ID: 25070759 doi:10.1016/j.ptsp.2014.05.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Cashman GE. The effect of weak hip abductors or external rotators on knee valgus kinematics in healthy subjects: a systematic review. J Sport Rehabil. 2012;21(3):273284. PubMed ID: 22894982 doi:10.1123/jsr.21.3.273

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Ireland ML, Gaudette M, Crook S. ACL injuries in the female athlete. J Sport Rehabil. 1997;6(2):97110. doi:10.1123/jsr.6.2.97

  • 14.

    Jarvis AS. The Association between Measures of Core Stability and Biomechanics of the Trunk and Knee During a Single Leg Squat. ProQuest, UMI Dissertations Publishing; 2010.

    • Search Google Scholar
    • Export Citation
  • 15.

    Rabin A, Portnoy S, Kozol Z. The association of ankle dorsiflexion range of motion with hip and knee kinematics during the lateral step-down test. J Orthop Sports Phys Ther. 2016;46(11):10021009. PubMed ID: 27686412 doi:10.2519/jospt.2016.6621

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Burnham JM, Yonz MC, Robertson KE, et al. Relationship of hip and trunk muscle function with single leg step-down performance: implications for return to play screening and rehabilitation. Phys Ther Sport. 2016;22:6673. PubMed ID: 27592407 doi:10.1016/j.ptsp.2016.05.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Charlton PC, Bryant AL, Kemp JL, Clark RA, Crossley KM, Collins NJ. Single-leg squat performance is impaired 1 to 2 years after hip arthroscopy. PM R. 2016;8(4):321330. doi:10.1016/j.pmrj.2015.07.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Zwerver J, Bredeweg SW, Hof AL, Purdam C. Biomechanical analysis of the single-leg decline squat. Br J Sports Med. 2007;41(4):264268. PubMed ID: 17224441 doi:10.1136/bjsm.2006.032482

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Kongsgaard M, Aagaard P, Roikjaer S, et al. Decline eccentric squats increases patellar tendon loading compared to standard eccentric squats. Clin Biomech. 2006;21(7):748754. doi:10.1016/j.clinbiomech.2006.03.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Mohtadi NGH, Griffin DR, Pedersen ME, et al. The development and validation of a self-administered quality-of-life outcome measure for young, active patients with symptomatic hip disease: the International Hip Outcome Tool (iHOT-33). Arthroscopy. 2012;28(5):595610. PubMed ID: 22542433 doi:10.1016/j.arthro.2012.03.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Freke M, Crossley K, Kemp J, Russell T, Sims K, Semciw A. Strength and range of movement deficits are associated with symptom severity in people scheduled for hip arthroscopy. Eur J Pain. 2019;23(6):10831090. PubMed ID: 30746810 doi:10.1002/ejp.1371

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kemp JL, Collins NJ, Roos EM, Crossley KM. Psychometric properties of patient-reported outcome measures for hip arthroscopic surgery. Am J Sports Med. 2013;41(9):20652073. PubMed ID: 23835268 doi:10.1177/0363546513494173

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Galna B, Barry G, Jackson D, Mhiripiri D, Olivier P, Rochester L. Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson’s disease. Gait Posture. 2014;39(4):10621068. PubMed ID: 24560691 doi:10.1016/j.gaitpost.2014.01.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Yang Y, Pu F, Li Y, Li S, Fan Y, Li D. Reliability and validity of Kinect RGB-D sensor for assessing standing balance. IEEE Sensors J. 2014;14(5):16331638. doi:10.1109/JSEN.2013.2296509

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Bonnechère B, Van Sint Jan S, Jansen B, et al. Validity and reliability of the Kinect within functional assessment activities: comparison with standard stereophotogrammetry. Gait Posture. 2014;39(1):593598. doi:10.1016/j.gaitpost.2013.09.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kemp JL, Schache AG, Makdissi M, Sims KJ, Crossley KM. Greater understanding of normal hip physical function may guide clinicians in providing targeted rehabilitation programmes. J Sci Med Sport. 2013;16(4):292296. PubMed ID: 23266242 doi:10.1016/j.jsams.2012.11.887

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Freke MD, Crossley KM, Russell T, Sims KJ. Can hip extension torque predict performance during a walking forward lunge? J Fitness Res. 2016;5(2):3847.

    • Search Google Scholar
    • Export Citation
  • 28.

    Portney L, Watkins M. Foundations of Clinical Research: Applications to Practice. New Jersey, NJ: Prentice Hall Inc; 2000.

  • 29.

    Lewis C, Loverro K, Khuu A. Kinematic differences during single leg stepdown between individuals with femoroacetabular syndrome and individuals without hip pain. J Orthop Sports Phys Ther. 2018;48(4):270279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Kumar D, Dillon A, Nardo L, Link TM, Majumdar S, Souza RB. Differences in the association of hip cartilage lesions and cam-type femoroacetabular impingement with movement patterns: a preliminary study. PM R. 2014;6(8):681689. PubMed ID: 24534097 doi:10.1016/j.pmrj.2014.02.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Khuu A, Loverro K, Lewis C. Kinematics during single leg squat and step down tasks in individuals with unilateral hip pain and healthy controls. Paper Presented at: 40th Annual Meeting of the American Society of Biomechanic; August 2–5, 2016; Raleigh, NC, USA.

    • Export Citation
  • 32.

    Homan KJ, Norcross MF, Goerger BM, Prentice WE, Blackburn JT. The influence of hip strength on gluteal activity and lower extremity kinematics. J Electromyogr Kinesiol. 2013;23(2):411415. doi:10.1016/j.jelekin.2012.11.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Neumann DA. Kinesiology of the Musculoskeletal System: Foundations for Physical Rehabilitation. St. Louis, MS: Mosby; 2002.

  • 34.

    Claiborne TL, Armstrong CW, Gandhi V, Pincivero DM. Relationship between hip and knee strength and knee valgus during a single leg squat. J Appl Biomech. 2006;22(1):4150. PubMed ID: 16760566 doi:10.1123/jab.22.1.41

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Lima YL, Ferreira VMLM, de Paula Lima PO, Bezerra MA, de Oliveira RR, Almeida GPL. The association of ankle dorsiflexion and dynamic knee valgus: a systematic review and meta-analysis. Phys Ther Sport. 2018;29:6169. PubMed ID: 28974358 doi:10.1016/j.ptsp.2017.07.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Aminaka N, Gribble PA. Patellar taping, patellofemoral pain syndrome, lower extremity kinematics, and dynamic postural control. J Athl Train. 2008;43(1):2128. PubMed ID: 18335009 doi:10.4085/1062-6050-43.1.21

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Mendis MD, Wilson SJ, Hayes DA, Watts MC, Hides JA. Hip flexor muscle size, strength and recruitment pattern in patients with acetabular labral tears compared to healthy controls. Man Ther. 2014;19(5):405410. PubMed ID: 24646662 doi:10.1016/j.math.2014.02.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 212 211 33
Full Text Views 13 13 2
PDF Downloads 10 10 1