Fatigue-Related Changes in Running Gait Patterns Persist in the Days Following a Marathon Race

Click name to view affiliation

Christian A. Clermont
Search for other papers by Christian A. Clermont in
Current site
Google Scholar
PubMed
Close
,
Andrew J. Pohl
Search for other papers by Andrew J. Pohl in
Current site
Google Scholar
PubMed
Close
, and
Reed Ferber
Search for other papers by Reed Ferber in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: The risk of experiencing an overuse running-related injury can increase with atypical running biomechanics associated with neuromuscular fatigue and/or training errors. While it is important to understand the changes in running biomechanics within a fatigue-inducing run, it may be more clinically relevant to assess gait patterns in the days following a marathon to better evaluate the effects of inadequate recovery on injury. Objective: To use center of mass (CoM) acceleration patterns to investigate changes in running patterns prior to (PRE) and at 2 (POST2) and 7 (POST7) days following a marathon race. Design: Pre–post intervention study. Setting: A 200-m oval track surface. Participants: Seventeen recreational marathon runners (10 females, age = 34.2 [5.67] y; 7 males, age = 47.41 [15.32] y). Intervention: Marathon race. Main Outcome Measures: An inertial measurement unit was placed near the CoM to collect triaxial acceleration data during overground running for PRE, POST2, and POST7 sessions. Twenty-two features were extracted from the acceleration waveforms to characterize different aspects of running gait. Lower-limb musculoskeletal pain was also recorded at each session with a visual analog scale. Results: At POST2, runners reported higher self-reported pain and exhibited elevated peak mediolateral acceleration with an increased mediolateral ratio of acceleration root mean square compared with PRE. At POST7, pain was reduced and more similar to PRE, with runners demonstrating increased stride regularity in the vertical direction and decreased peak resultant acceleration. Conclusions: The observed changes in CoM motion at POST2 may be associated with atypical running biomechanics that can translate to greater mediolateral impulses, potentially increasing the risk of injury. This study demonstrates the use of an accelerometer as an effective tool to detect atypical CoM motion for runners due to fatigue, recovery, and musculoskeletal pain in real-world environments.

Clermont, Pohl, and Ferber are with the Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada. Ferber is with the Faculty of Nursing, University of Calgary, Calgary, AB, Canada; the Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; and Running Injury Clinic, Calgary, AB, Canada.

Clermont (christian.clermont@ucalgary.ca) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Scheerder J, Breedveld K, Borgers J. Who is doing a run with the running boom? In: Breedveld K, ed. Running Across Europe . United Kingdom: Palgrave Macmillan; 2015:127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Messier SP, Martin DF, Mihalko SL, et al. A 2-year prospective cohort study of overuse running injuries the runners and injury longitudinal study (TRAILS). Am J Sports Med. 2018;46(9):22112221. PubMed ID: 29791183 doi:10.1177/0363546518773755

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    van Gent RN, Siem D, van Middelkoop M, van Os AG, Bierma-Zeinstra SS, Koes BW. Incidence and determinants of lower extremity running injuries in long distance runners: a systematic review. Br J Sports Med. 2007;41:469480. PubMed ID: 17473005 doi:10.1136/bjsm.2006.033548

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Hreljac A. Impact and overuse injuries in runners. Med Sci Sports Exerc. 2004;36(5):845849. doi:10.1249/01.MSS.0000126803.66636.DD

  • 5.

    Dierks TA, Davis IS, Hamill J. The effects of running in an exerted state on lower extremity kinematics and joint timing. J Biomech. 2010;43(15):29932998. PubMed ID: 20663506 doi:10.1016/j.jbiomech.2010.07.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Maas E, De Bie J, Vanfleteren R, Hoogkamer W. Novice runners show greater changes in kinematics with fatigue compared with competitive runners. Sports Biomech. 2017;17(3):350360. doi:10.1080/14763141.2017.1347193

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Benson LC, O’Connor KM. The effect of exertion on joint kinematics and kinetics during running using a waveform analysis approach. J Appl Biomech. 2015;31(4):250257. PubMed ID: 25838156 doi:10.1123/jab.2014-0138

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Paquette MR, Melcher DA. Impact of a long run on injury-related biomechanics with relation to weekly mileage in trained male runners. J Appl Biomech. 2017;33(3):216221. PubMed ID: 27992250 doi:10.1123/jab.2016-0170

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Meardon SA, Hamill J, Derrick TR. Running injury and stride time variability over a prolonged run. Gait Posture. 2011;33(1):3640. PubMed ID: 21036046 doi:10.1016/j.gaitpost.2010.09.020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Mo S, Chow DHK. Differences in lower-limb coordination and coordination variability between novice and experienced runners during a prolonged treadmill run at anaerobic threshold speed. J Sports Sci. 2019;37(9):10211028. PubMed ID: 30394180 doi:10.1080/02640414.2018.1539294

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Donahue SW, Sharkey NA. Strains in the metatarsals during the stance phase of gait: implications for stress fractures. J Bone Joint Surg Am. 1999;81(9):12361244. PubMed ID: 10505520 doi:10.2106/00004623-199909000-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Mizrahi J, Verbitsky O, Isakov E, Daily D. Effect of fatigue on leg kinematics and impact acceleration in long distance running. Hum Mov Sci. 2000;19:139151. doi:10.1016/S0167-9457(00)00013-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Schütte KH, Maas EA, Exadaktylos V, Berckmans D, Venter RE, Vanwanseele B. Wireless tri-axial trunk accelerometry detects deviations in dynamic center of mass motion due to running-induced fatigue. PLoS One. 2015;10(10):112. doi:10.1371/journal.pone.0141957

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Reenalda J, Maartens E, Homan L, Buurke JH (Jaap) . Continuous three dimensional analysis of running mechanics during a marathon by means of inertial magnetic measurement units to objectify changes in running mechanics. J Biomech. 2016;49(14):33623367. PubMed ID: 27616268 doi:10.1016/j.jbiomech.2016.08.032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Schütte KH, Seerden S, Venter R, Vanwanseele B. Influence of outdoor running fatigue and medial tibial stress syndrome on accelerometer-based loading and stability. Gait Posture. 2018;59:222228. doi:10.1016/j.gaitpost.2017.10.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Strohrmann C, Harms H, Kappeler-Setz C, Tröster G. Monitoring kinematic changes with fatigue in running using body-worn sensors. IEEE Trans Inf Technol Biomed. 2012;16(5):983990. PubMed ID: 22677321 doi:10.1109/TITB.2012.2201950

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Meeusen R, Duclos M, Foster C, et al. Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sports Exerc. 2013;45(1):186205. PubMed ID: 23247672 doi:10.1249/MSS.0b013e318279a10a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Soligard T, Schwellnus M, Alonso J-M, et al. How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. Br J Sports Med. 2016;50(17):10301041. PubMed ID: 27535989 doi:10.1136/bjsports-2016-096581

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Petersen K, Hansen CB, Aagaard P, Madsen K. Muscle mechanical characteristics in fatigue and recovery from a marathon race in highly trained runners. Eur J Appl Physiol. 2007;101(3):385396. PubMed ID: 17661071 doi:10.1007/s00421-007-0504-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Fuller JT, Bellenger CR, Thewlis D, et al. Tracking performance changes with running-stride variability when athletes are functionally overreached. Int J Sports Physiol Perform. 2017;12(3):357363. PubMed ID: 27295717 doi:10.1123/ijspp.2015-0618

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Bellenger CR, Arnold JB, Buckley JD, Thewlis D, Fuller JT. Detrended fluctuation analysis detects altered coordination of running gait in athletes following a heavy period of training. J Sci Med Sport. 2018:35. doi:10.1016/j.jsams.2018.09.002

    • Search Google Scholar
    • Export Citation
  • 22.

    Lindsay TR, Yaggie JA, McGregor SJ. A wireless accelerometer node for reliable and valid measurement of lumbar accelerations during treadmill running. Sports Biomech. 2016;15(1):1122. doi:10.1080/14763141.2015.1123760

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Benson LC, Clermont CA, Watari R, Exley T, Ferber R. Automated accelerometer-based gait event detection during multiple running conditions. Sensors. 2019;19(7):1483. doi:10.3390/s19071483

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Moe-Nilssen R, Helbostad JL. Estimation of gait cycle characteristics by trunk accelerometry. J Biomech. 2004;37(1):121126. PubMed ID: 14672575 doi:10.1016/S0021-9290(03)00233-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Heller GZ, Manuguerra M, Chow R. How to analyze the visual analogue scale: myths, truths and clinical relevance. Scand J Pain. 2016;13(2016):6775. doi:10.1016/j.sjpain.2016.06.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    McElreath R. Statistical Rethinking: A Bayesian Course With Examples in R and Stan. 1st ed. New York, NY: Chapman and Hall/CRC; 2015. doi:10.1201/9781315372495

    • Search Google Scholar
    • Export Citation
  • 27.

    Benson LC, Clermont CA, Bošnjak E, Ferber R. The use of wearable devices for walking and running gait analysis outside of the lab: a systematic review. Gait Posture. 2018;63:124138. PubMed ID: 29730488 doi:10.1016/j.gaitpost.2018.04.047

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Gelman A. Prior distributions for variance parameters in hierarchical models (Comment on Article by Browne and Draper). Bayesian Anal. 2006;1(3):515534. doi:10.1214/06-BA117A

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci. 1992;7(4):457472. doi:10.1214/ss/1177011136

  • 30.

    Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian Data Analysis. 3rd ed. New York: Chapman and Hall/CRC; 2013. doi:10.1201/b16018

  • 31.

    Morin JB, Samozino P, Millet GY. Changes in running kinematics, kinetics, and spring-mass behavior over a 24-h run. Med Sci Sports Exerc. 2011;43(5):829836. PubMed ID: 20962690 doi:10.1249/MSS.0b013e3181fec518

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Moore IS. Is there an economical running technique? A review of modifiable biomechanical factors affecting running economy. Sports Med. 2016;46(6):793807. doi:10.1007/s40279-016-0474-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Wundersitz DWT, Netto KJ, Aisbett B, Gastin PB. Validity of an upper-body-mounted accelerometer to measure peak vertical and resultant force during running and change-of-direction tasks. Sports Biomech. 2013;12(4):403412. doi:10.1080/14763141.2013.811284

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    McGregor SJ, Busa MA, Yagie JA, Bollt EM. High resolution MEMS accelerometers to estimate VO2 and compare running mechanics between highly trained inter-collegiate and untrained runners. PLoS One. 2009;4(10):e7355. PubMed ID: 19806216 doi:10.1371/journal.pone.0007355

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Provot T, Chiementin X, Bolaers F, Munera M. A time to exhaustion model during prolonged running based on wearable accelerometers [published online ahead of print January 25, 2019]. Sports Biomech. doi:10.1080/14763141.2018.1549682

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Lin S-P, Sung W-H, Kuo F-C, Kuo TBJ, Chen J-J. Impact of center-of-mass acceleration on the performance of ultramarathon runners. J Hum Kinet. 2014;44:4152. PubMed ID: 25713664 doi:10.2478/hukin-2014-0109

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Ferber R, Davis IM, Williams DS. Gender differences in lower extremity mechanics during running. Clin Biomech. 2003;18(4):350357. doi:10.1016/S0268-0033(03)00025-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Clermont CA, Osis ST, Phinyomark A, Ferber R. Kinematic gait patterns in competitive and recreational runners. J Appl Biomech. 2017;33(4):268276. PubMed ID: 28253053 doi:10.1123/jab.2016-0218

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Clermont CA, Benson LC, Osis ST, Kobsar D, Ferber R. Running patterns for male and female competitive and recreational runners based on accelerometer data. J Sports Sci. 2019;37(2):204211. PubMed ID: 29920155 doi:10.1080/02640414.2018.1488518

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Fukuchi RK, Duarte M. Comparison of three-dimensional lower extremity running kinematics of young adult and elderly runners. J Sports Sci. 2008;26(13):14471454. PubMed ID: 18923957 doi:10.1080/02640410802209018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Willy RW, Paquette MR. The physiology and biomechanics of the master runner. Sports Med Arthrosc. 2019;27(1):1521. http://books.google.com/books?id=_-45AQAAIAAJ&pgis=1. PubMed ID: 30601395 doi:10.1097/JSA.0000000000000212

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Schütte KH, Aeles J, De Beéck TO, van der Zwaard BC, Venter R, Vanwanseele B. Surface effects on dynamic stability and loading during outdoor running using wireless trunk accelerometry. Gait Posture. 2016;48:220225. doi:10.1016/j.gaitpost.2016.05.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Benson LC, Ahamed NU, Kobsar D, Ferber R. New considerations for collecting biomechanical data using wearable sensors: number of level runs to define a stable running pattern with a single IMU. J Biomech. 2019;85:187192. PubMed ID: 30670328 doi:10.1016/j.jbiomech.2019.01.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2980 664 76
Full Text Views 379 61 3
PDF Downloads 209 55 1