Effects of the Functional Heel Drop Exercise on the Muscle Architecture of the Gastrocnemius

Click name to view affiliation

Diego Alonso-Fernandez
Search for other papers by Diego Alonso-Fernandez in
Current site
Google Scholar
PubMed
Close
,
Yaiza Taboada-Iglesias
Search for other papers by Yaiza Taboada-Iglesias in
Current site
Google Scholar
PubMed
Close
,
Tania García-Remeseiro
Search for other papers by Tania García-Remeseiro in
Current site
Google Scholar
PubMed
Close
, and
Águeda Gutiérrez-Sánchez
Search for other papers by Águeda Gutiérrez-Sánchez in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: The architectural characteristics of a muscle determine its function. Objective: To determine the architectural adaptations of the lateral gastrocnemius (LG) and medial gastrocnemius (MG) muscles after a functional eccentric strength training protocol consisting of heel drop exercises, followed by a subsequent detraining period. Design: Pretest and posttest. Setting: Training rooms and laboratory. Participants: The participants (N = 45) who were randomly divided into an experimental group (EG, n = 25) and a control group (CG, n = 20). Interventions: The 13-week intervention included participants (N = 45) who were randomly divided into an EG (n = 25) and a CG (n = 20). The EG performed a week of control and training, 8 weeks of eccentric training, and 4 weeks of detraining. The CG did not perform any type of muscular training. The architectural characteristics of the LG and MG muscles were evaluated at rest in both groups using 2-D ultrasound before (pretest–week 1) and after (posttest–week 9) the training, and at the end of the detraining period (retest–week 13). Main Outcome Measures: One-way repeated measures analysis of variance was used to determine training-induced changes in each of the variables of the muscle architecture. Results: After the training period, the members of the EG experienced a significant increase in the fascicle length of LG (t = −9.85, d = 2.78, P < .001) and MG (t = −8.98, d = 2.54, P < .001), muscle thickness (t = −6.71, d = 2.86, P < .001) and (t = −7.85, d = 2.22, P < .001), and the pennation angle (t = −10.21, d = 1.88, P < .05) and (t = −1.87, d = 0.53, P < .05), respectively. After the detraining period, fascicle length, muscle thickness, and pennation angle showed a significant decrease. In the CG, no significant changes were observed in any of the variables. Conclusions: The heel drop exercise seems to generate adaptations in the architectural conditions of LG and MG, which are also reversible after a detraining period. These results may have practical implications for injury prevention and rehabilitation programs.

Alonso-Fernandez and Gutiérrez-Sánchez are with Special Didactics Department, Faculty of Science Education and Sport, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, University of Vigo, Pontevedra, Spain. Taboada-Iglesias and García-Remeseiro are with the Functional Biology and Health Sciences Department, Faculty of Physiotherapy, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, University of Vigo, Pontevedra, Spain.

Alonso-Fernandez (diego_alonso@uvigo.es) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Douglas J, Pearson S, Ross A, McGuigan M. Chronic adaptations to eccentric training: a systematic review. Sports Med. 2017;47(5):917941. PubMed ID: 27647157 doi:10.1007/s40279-016-0628-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    LaStayo PC, Woolf JM, Lewek MD, Snyder-Mackler L, Reich T, Lindstedt SL. Eccentric muscle contractions: their contribution to injury, prevention, rehabilitation, and sport. J Orthop Sports Phys Ther. 2003;33(10):557571. PubMed ID: 14620785 doi:10.2519/jospt.2003.33.10.557

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Roig M, O’Brien K, Kirk G, et al. The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta-analysis. Br J Sports Med. 2009;43(8):556568. PubMed ID: 18981046 doi:10.1136/bjsm.2008.051417

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Brooks JHM, Fuller CW, Kemp SPT, Reddin DB. Epidemiology of injuries in English professional rugby union: part 1 match injuries. Br J Sports Med. 2005;39(10):757766. PubMed ID: 16183774 doi:10.1136/bjsm.2005.018135

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Baroni BM, Geremia JM, Rodrigues R, De Acebedo FR, Karamanidis K, Vaz MA. Muscle architecture adaptations to knee extensor eccentric training: rectus femoris vs vastus lateralis. Muscle Nerve. 2013;48(4):498506. PubMed ID: 23852989 doi:10.1002/mus.23785

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Alonso-Fernandez D, Docampo-Blanco P, Martinez-Fernandez J. Changes in muscle architecture of biceps femoris induced by eccentric strength training with Nordic Hamstring exercise running. Scand J Med Sci Sports. 2018;28(1):8894. PubMed ID: 28314091 doi:10.1111/sms.12877

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Bourne MN, Duhig SJ, Timmins RG, et al. Impact of the Nordic hamstring and hip extension exercises on hamstring architecture and morphology: implications for injury prevention. Br J Sports Med. 2017;51(5):469477. PubMed ID: 27660368 doi:10.1136/bjsports-2016-096130

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Timmins RG, Shield AJ, Williams MD, Lorenzen C, Opar DA. Biceps femoris long head architecture: a reliability and retrospective injury study. Med Sci Sports Exerc. 2015;47(5):905913. PubMed ID: 25207929 doi:10.1249/MSS.0000000000000507

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Alonso-Fernandez D, Gutierrez-Sanchez A, Garcia-Remeseiro T, Garganta R. Effects of the Nordic hamstring exercise on the architecture of the semitendinosus. Isokinet Exerc Sci. 2018;26(2):8188. doi:10.3233/IES-172196

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Moritani T, deVries HA. Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med. 1979;58(3):115130. PubMed ID: 453338

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Fling BW, Christie A, Kamen G. Motor unit synchronization in FDI and biceps brachii muscles of strength-trained males. J Electromyogr Kinesiol. 2009;19(5):800809. PubMed ID: 18691906 doi:10.1016/j.jelekin.2008.06.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Christie A, Kamen G. Short-term training adaptations in maximal motor unit firing rates and after hyperpolarization duration. Muscle Nerve. 2010;41(5):651660. PubMed ID: 19941348

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Rader EP, Miller GR, Chetlin RD, Wirth O, Baker BA. Volitional weight-lifting in rats promotes adaptation via performance and muscle morphology prior to gains in muscle mass. J Environ Health Insigths. 2014;8(suppl 1):19.

    • Search Google Scholar
    • Export Citation
  • 14.

    Lieber RL, Ward SR. Skeletal muscle design to meet functional demands. Philos Trans R Soc Lond B Biol Sci. 2011;366(1570):14661476. PubMed ID: 21502118 doi:10.1098/rstb.2010.0316

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Blazevich AJ, Cannavan D, Coleman DR, Horne S. Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. J Appl Physiol. 2007;103(5):15651575. PubMed ID: 17717119 doi:10.1152/japplphysiol.00578.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Seynnes OR, Maganaris CN, de Boer MD, Di Prampero PE, Narici MV. Early structural adaptations to unloading in the human calf muscles. Acta Physiol. 2008;193(3):265274. doi:10.1111/j.1748-1716.2008.01842.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Duclay J, Martin A, Duclay A, Cometti G, Pousson M. Behavior of fascicles and the myotendinous junction of human medial gastrocnemius following eccentric strength training. Muscle Nerve. 2009;39(6):819827. PubMed ID: 19301364 doi:10.1002/mus.21297

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Timmins RG, Ruddy JD, Presland J, et al. Architectural changes of the biceps femoris long head after concentric or eccentric training. Med Sci Sports Exerc. 2016;48(3):499508. PubMed ID: 26460634 doi:10.1249/MSS.0000000000000795

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Seymore KD, Domire ZJ, Devita P, Rider PM, Kulas AS. The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength. Eur J Appl Physiol. 2017;117(5):943953. PubMed ID: 28280975 doi:10.1007/s00421-017-3583-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Ekstrand J, Hägglun M, Walden M. Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med. 2011;39(6):12261232. PubMed ID: 21335353 doi:10.1177/0363546510395879

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Werner BC, Belkin NS, Kennelly S, Weiss L, Barnes RP, Potter HG. Acute gastrocnemius-soleus complex injuries in National Football League Athletes. Orthop J Sports Med. 2017;5(1):232596711668034. doi:10.1177/2325967116680344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Orchard J. Intrinsic and extrinsic risk factors for muscle strains in Australian football. Am J Sports Med. 2001;29(3):300303. PubMed ID: 11394599 doi:10.1177/03635465010290030801

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Fields KB, Rigby MD. Muscular calf injuries in runners. Curr Sports Med Rep. 2016;15(5):320324. PubMed ID: 27618240 doi:10.1249/JSR.0000000000000292

  • 24.

    Alfredson H, Pietilä T, Jonsson P, Lorentzon R. Heavy-load eccentric calf muscle training for the treatment of chronic Achilles tendinosis. Am J Sports Med. 1998;26(3):360366. PubMed ID: 9617396 doi:10.1177/03635465980260030301

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Kellis E, Galanis N, Natsis K, Kapetanos G. Validity of architectural properties of the hamstring muscles: correlation of ultrasound findings with cadaveric dissection. J Biomech. 2009;42(15):25492554. PubMed ID: 19646698 doi:10.1016/j.jbiomech.2009.07.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Fouré A, Nordez A, Cornu C. Effects of eccentric training on mechanical properties of the plantar flexor muscle-tendon complex. J Appl Physiol. 2013;114(5):523537. doi:10.1152/japplphysiol.01313.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Lynn R, Morgan DL. Decline running produces more sarcomeres in rat vastus intermedius muscle fibers than does incline running. J Appl Physiol. 1994;77(3):14391444. PubMed ID: 7836150 doi:10.1152/jappl.1994.77.3.1439

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Seynnes OR, de Boer M, Narici MV. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol. 2007;102(1):368373. doi:10.1152/japplphysiol.00789.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Blazevich AJ, Gill ND, Zhou S. Intra- and intermuscular variation in human quadriceps femoris architecture assessed in vivo. J Anat. 2006;209(3):289310. PubMed ID: 16928199 doi:10.1111/j.1469-7580.2006.00619.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Narici M, Cerretelli P. Changes in human muscle architecture in disuse-atrophy evaluated by ultrasound imaging. J Gravit Physiol. 1998;5(1):7374.

    • Search Google Scholar
    • Export Citation
  • 31.

    Fyfe JJ, Opar DA, Williams MD, Shield AJ. The role of neuromuscular inhibition in hamstring strain injury recurrence. J Electromyogr Kinesiol. 2013;23(3):523530. PubMed ID: 23402871 doi:10.1016/j.jelekin.2012.12.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Sharifnezhad A, Marzilger R, Arampatzis A. Effects of load magnitude, muscle length and velocity during eccentric chronic loading on the longitudinal growth of the vastus lateralis muscle. J Exp Biol. 2014;217(15):27262733. doi:10.1242/jeb.100370

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hullfish TJ, O’Connor KM, Baxter JR. Gastrocnemius fascicles are shorter and more pennate throughout the first month following acute Achilles tendon rupture. PeerJ. 2019;7:e6788. PubMed ID: 31065459 doi:10.7717/peerj.6788

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Scott D, Johansson J, McMillan LB, Ebeling PR, Nordstrom A, Nordstrom P. Mid-calf skeletal muscle density and its associations with physical activity, bone health and incident 12-month falls in older adults: the healthy ageing initiative. Bone. 2019;120:446451. PubMed ID: 30537557 doi:10.1016/j.bone.2018.12.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Simpson CL, Kim BDH, Bourcet MR, Jones GR, Jakobi JM. Stretch training induces unequal adaptation in muscle fascicles and thickness in medial and lateral gastrocnemii. Scand J Med Sci Sports. 2017;27:15971604. PubMed ID: 28138986 doi:10.1111/sms.12822

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2604 605 8
Full Text Views 71 21 2
PDF Downloads 51 11 4