Diagnostic Validity of an Isokinetic Testing to Identify Partial Anterior Cruciate Ligament Injuries

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Objective: To assess the diagnostic validity of an isokinetic testing to detect partial injuries on the anterior cruciate ligament (ACL). Design: Prospective diagnostic study. Settings: Orthopedic clinic, physiotherapy clinic, orthopedic hospital, and diagnostic/image clinic. Participants: Consecutive patients (n = 29) with unilateral knee complaint submitted to physical examination, magnetic resonance images (MRIs), and isokinetic testing prior to surgery of ACL reconstruction. Interventions: Not applicable. Main Outcome Measures: The isokinetic torque curves data from extensor and flexor muscles were converted to frequency domain by fast Fourier transformation and compared with healthy contralateral limb. Differences were categorized as unstable knees and these conclusions were compared with patient’s physical examinations (doctor’s conclusion on ACL integrity) and MRIs (as the radiologist conclusions on ACL integrity). After surgery, all intraoperatively confirmed partial injured patient’s data were collected. The diagnostic accuracy measures to compare the conclusions of all 3 professionals included sensitivity, specificity, positive predictive value, negative predictive value, disease prevalence, positive likelihood ratio, and accuracy—all using a confidence interval of 95%. Results: Compared with MRI, the sensitivity of isokinetic test for an ACL partial injury was 90.00%, specificity 83.33%, positive predictive value 52.94%, negative predictive value 97.56%, and accuracy 84.48%. Compared with physical examination, the sensitivity of isokinetic test for an ACL partial injury was 85.71%, specificity 78.43%, positive predictive value 35.29%, negative predictive value 97.56%, and accuracy 79.31%. Conclusions: This method of isokinetic data analysis through fast Fourier transformation can be used to improve diagnostic accuracy of a difficult detection injury. Even present, a partial ACL injury can produce a stable knee during isokinetic testing and could be used to detect candidates for conservative treatment based on strengthening exercises, reducing surgery risks, and financial and social impact on patient’s life.

Scoz is with Sports Science Program, LaB2Health—Laboratory of Biomechanics, Body Composition and Health, Department of Sport Science, Exercise and Health, University of Trás-dos-Montes and Alto Douro, Vila Real, Portugal. Scoz and Amorim are with Physiotherapy Program, Department of Physiotherapy, Universidade Cidade de São Paulo, São Paulo, Brazil. Amorim and Da Silva are with the Département des Sciences de la Santé, Programme de physiothérapie de l’université McGill offert en extension à l’Université du Québec à Chicoutimi (UQAC), Centre de recherché Intersectoriel en santé durable, Laboratorie de recherche BioNR—UQAC, Saguenay, QC, Canada. Amorim and Vieira are with the Department of Physical Therapy, Nicole Wertheim College of Nursing and Health Sciences, Florida International University, Miami, FL, USA. Mazziotti is with Physical Therapy Program, Universidade Cidade de São Paulo, São Paulo, Brazil; and the Department of Physical Therapy and Biomechanics, Paris Saint-Germain, Paris, France. Lopes is with the Department of Physical Therapy, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA, USA. Gabriel is with the LaB2Health—Laboratory of Biomechanics, Body Composition and Health, Department of Sport Science, Exercise and Health, University of Trás-dos-Montes and Alto Douro, Vila Real, Portugal.

Scoz (robsonscoz@hotmail.com) is corresponding author.

Supplementary Materials

    • Supplementary Material (PDF 91 KB)
  • 1.

    DeFranco MJ, Bach BR. A comprehensive review of partial anterior cruciate ligament tears. J Bone Joint Surg Am. 2009;91(1):198208. PubMed ID: 19122096 doi:10.2106/JBJS.H.00819

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Arangio GA, Cohen EW. Incidence of associated knee lesions with torn anterior cruciate ligament: retrospective cohort assessment. J Sport Rehabil. 1998;7(1):18. doi:10.1123/jsr.7.1.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Griffin LY, Agel J, Albohm MJ, et al. Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg. 2000;8(3):141150. PubMed ID: 10874221 doi:10.5435/00124635-200005000-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Fithian DC, Paxton LW, Goltz DH. Fate of the anterior cruciate ligament-injured knee. Orthop Clin North Am. 2002;33(4):621636, v. PubMed ID: 12528905 doi:10.1016/S0030-5898(02)00015-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Senter C, Hame SL. Biomechanical analysis of tibial torque and knee flexion angle: implications for understanding knee injury. Sports Med. 2006;36(8):635641. PubMed ID: 16869706 doi:10.2165/00007256-200636080-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Delincé P, Ghafil D. Anterior cruciate ligament tears: conservative or surgical treatment? Knee Surg Sports Traumatol Arthrosc. 2013;21(7):17061707. doi:10.1007/s00167-012-2134-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Mifune Y, Ota S, Takayama K, et al. Therapeutic advantage in selective ligament augmentation for partial tears of the anterior cruciate ligament: results in an animal model. Am J Sports Med. 2013;41(2):365373. PubMed ID: 23299851 doi:10.1177/0363546512471614

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Branch TP, Mayr HO, Browne JE, Campbell JC, Stoehr A, Jacobs CA. Instrumented examination of anterior cruciate ligament injuries: minimizing flaws of the manual clinical examination. Arthroscopy. 2010;26(7):9971004. PubMed ID: 20620801 doi:10.1016/j.arthro.2010.01.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Baltzopoulos V, Brodie DA. Isokinetic dynamometry. Applications and limitations. Sports Med. 1989;8(2):101116. PubMed ID: 2675256 doi:10.2165/00007256-198908020-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Edouard P, Samozino P, Julia M, et al. Reliability of isokinetic assessment of shoulder-rotator strength: a systematic review of the effect of position. J Sport Rehabil. 2011;20(3):367383. PubMed ID: 21828388 doi:10.1123/jsr.20.3.367

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Gleeson NP, Mercer TH. The utility of isokinetic dynamometry in the assessment of human muscle function. Sports Med. 1996;21(1):1834. PubMed ID: 8771283 doi:10.2165/00007256-199621010-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Pua YH, Bryant AL, Steele JR, Newton RU, Wrigley TV. Isokinetic dynamometry in anterior cruciate ligament injury and reconstruction. Ann Acad Med Singapore. 2008;37(4):330340. PubMed ID: 18461219

    • Search Google Scholar
    • Export Citation
  • 13.

    Tunstall H, Mullineaux DR, Vernon T. Criterion validity of an isokinetic dynamometer to assess shoulder function in tennis players. Sports Biomech. 2005;4(1):101111. PubMed ID: 15807380 doi:10.1080/14763140508522855

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Almosnino S, Brandon SCE, Day AG, Stevenson JM, Dvir Z, Bardana DD. Principal component modeling of isokinetic moment curves for discriminating between the injured and healthy knees of unilateral ACL deficient patients. J Electromyogr Kinesiol. 2014;24(1):134143. PubMed ID: 24280243 doi:10.1016/j.jelekin.2013.10.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Bryant AL, Clark RA, Pua Y-H. Morphology of hamstring torque-time curves following ACL injury and reconstruction: mechanisms and implications. J Orthop Res. 2011;29(6):907914. PubMed ID: 21259335 doi:10.1002/jor.21306

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Bryant AL, Pua Y-H, Clark RA. Morphology of knee extension torque-time curves following anterior cruciate ligament injury and reconstruction. J Bone Joint Surg Am. 2009;91(6):14241431. PubMed ID: 19487521 doi:10.2106/JBJS.H.01335

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Dvir Z, Eger G, Halperin N, Shklar A. Thigh muscle activity and anterior cruciate ligament insufficiency. Clin Biomech. 1989;4(2):8791. doi:10.1016/0268-0033(89)90044-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Eitzen I, Eitzen TJ, Holm I, Snyder-Mackler L, Risberg MA. Anterior cruciate ligament-deficient potential copers and noncopers reveal different isokinetic quadriceps strength profiles in the early stage after injury. Am J Sports Med. 2010;38(3):586593. PubMed ID: 20110458 doi:10.1177/0363546509349492

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Eitzen I, Holm I, Risberg MA. Preoperative quadriceps strength is a significant predictor of knee function two years after anterior cruciate ligament reconstruction. Br J Sports Med. 2009;43(5):371376. PubMed ID: 19224907 doi:10.1136/bjsm.2008.057059

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Ikeda H, Kurosawa H, Kim S-G. Quadriceps torque curve pattern in patients with anterior cruciate ligament injury. Int Orthop. 2002;26(6):374376. PubMed ID: 12466872 doi:10.1007/s00264-002-0402-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Terreri AS, Ambrósio MA, Pedrinelli A, et al. Isokinetic assessment of the flexor-extensor balance of the knee in athletes with total rupture of the anterior cruciate ligament. Rev Hosp Clin Fac Med Sao Paulo. 1999;54(2):3538. PubMed ID: 10513063 doi:10.1590/S0041-87811999000200001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kaminska E, Piontek T, Wiernicka M, Cywinska-Wasilewska G, Lewandowski J, Lochynski D. Differences in isokinetic strength of the knee extensors and flexors in men with isolated and combined cruciate-ligament knee injury. J Sport Rehabil. 2015;24(3):268277. PubMed ID: 25158093 doi:10.1123/jsr.2014-0157

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Paszkewicz J, Webb T, Waters B, McCarty CW, Van Lunen B. The effectiveness of injury-prevention programs in reducing the incidence of anterior cruciate ligament sprains in adolescent athletes. J Sport Rehabil. 2012;21(4):371377. PubMed ID: 22713252 doi:10.1123/jsr.21.4.371

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Simon JE, Grooms DR, Docherty CL. The long term impact of osteoarthritis following knee surgery in former collegiate athletes. J Sport Rehabil. 2018;28(1):3338. doi:10.1123/jsr.2017-0115

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Benjaminse A, Gokeler A, van der Schans CP. Clinical diagnosis of an anterior cruciate ligament rupture: a meta-analysis. J Orthop Sports Phys Ther. 2006;36(5):267288. PubMed ID: 16715828 doi:10.2519/jospt.2006.2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Malanga GA, Andrus S, Nadler SF, McLean J. Physical examination of the knee: a review of the original test description and scientific validity of common orthopedic tests. Arch Phys Med Rehabil. 2003;84(4):592603. PubMed ID: 12690600 doi:10.1053/apmr.2003.50026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Pincivero DM, Coelho AJ, Campy RM. Gender differences in perceived exertion during fatiguing knee extensions. Med Sci Sports Exerc. 2004;36(1):109117. PubMed ID: 14707776 doi:10.1249/01.MSS.0000106183.23941.54

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Robertson RJ, Goss FL, Metz KF. Perception of physical exertion during dynamic exercise: a tribute to Professor Gunnar A. V. Borg. Percept Mot Skills. 1998;86(1):183191. PubMed ID: 9530729 doi:10.2466/pms.1998.86.1.183

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Kersten P, White PJ, Tennant A. Is the pain visual analogue scale linear and responsive to change? An exploration using Rasch analysis. PLoS One. 2014;9(6):e99485. PubMed ID: 24921952 doi:10.1371/journal.pone.0099485

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Roberts CC, Towers JD, Spangehl MJ, Carrino JA, Morrison WB. Advanced MR imaging of the cruciate ligaments. Radiol Clin North Am. 2007;45(6):10031016. vi–vii.PubMed ID: 17981180 doi:10.1016/j.rcl.2007.08.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Norte GE, Knaus KR, Kuenze C, et al. MRI-based assessment of lower extremity muscle volumes in patients before and after ACL reconstruction. J Sport Rehabil. 2018;27(3):201212. doi:10.1123/jsr.2016-0141

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Logerstedt DS, Snyder-Mackler L, Ritter RC, Axe MJ, Orthopedic Section of the American Physical Therapy Association. Knee pain and mobility impairments: meniscal and articular cartilage lesions. J Orthop Sports Phys Ther. 2010;40(6):A1A35. PubMed ID: 20511698 doi:10.2519/jospt.2010.0304

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Häkkinen K. Short vs long rest period between the sets in hypertrophic resistance training: influence on muscle strength, size, and hormonal adaptations in trained men. J Strength Cond Res. 2005;19(3):572582. PubMed ID: 16095405 doi:10.1519/15604.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Kannus P. Isokinetic evaluation of muscular performance: implications for muscle testing and rehabilitation. Int J Sports Med. 1994;15(suppl 1):S11S18. doi:10.1055/s-2007-1021104

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Osternig LR. Isokinetic dynamometry: implications for muscle testing and rehabilitation. Exerc Sport Sci Rev. 1986;14:4580. PubMed ID: 3525192 doi:10.1249/00003677-198600140-00005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Giakas G, Baltzopoulos V. Time and frequency domain analysis of ground reaction forces during walking: an investigation of variability and symmetry. Gait Posture. 1997;5(3):189197. doi:10.1016/S0966-6362(96)01083-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Tsepis E, Giakas G, Vagenas G, Georgoulis A. Frequency content asymmetry of the isokinetic curve between ACL deficient and healthy knee. J Biomech. 2004;37(6):857864. PubMed ID: 15111073 doi:10.1016/j.jbiomech.2003.11.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Dempsey IJ, Norte GE, Hall M, et al. Relationship between physical therapy characteristics, surgical procedure, and clinical outcomes in patients after ACL reconstruction. J Sport Rehabil. 2019;28(2):171179. doi:10.1123/jsr.2017-0176

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Kuenze C, Cadmus-Bertram L, Pfieffer K, et al. Relationship between physical activity and clinical outcomes after ACL reconstruction. J Sport Rehabil. 2019;28(2):180187. doi:10.1123/jsr.2017-0186

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Chao W-C, Shih J-C, Chen K-C, Wu C-L, Wu N-Y, Lo C-S. The effect of functional movement training after anterior cruciate ligament reconstruction—a randomized controlled trial. J Sport Rehabil. 2018;27(6):541545. doi:10.1123/jsr.2017-0022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Nisell R, Ericson MO, Németh G, Ekholm J. Tibiofemoral joint forces during isokinetic knee extension. Am J Sports Med. 1989;17(1):4954. PubMed ID: 2929836 doi:10.1177/036354658901700108

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Christel PS, Akgun U, Yasar T, Karahan M, Demirel B. The contribution of each anterior cruciate ligament bundle to the Lachman test: a cadaver investigation. J Bone Joint Surg Br. 2012;94(1):6874. PubMed ID: 22219250 doi:10.1302/0301-620X.94B1.26562

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Lysholm M, Messner K. Sagittal plane translation of the tibia in anterior cruciate ligament-deficient knees during commonly used rehabilitation exercises. Scand J Med Sci Sports. 1995;5(1):4956. PubMed ID: 7882129 doi:10.1111/j.1600-0838.1995.tb00011.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Décary S, Fallaha M, Belzile S, et al. Clinical diagnosis of partial or complete anterior cruciate ligament tears using patients’ history elements and physical examination tests. PLoS One. 2018;13(6):e0198797. doi:10.1371/journal.pone.0198797

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 267 267 60
Full Text Views 41 41 3
PDF Downloads 32 32 2