The Immediate Effects of Transcranial Direct Current Stimulation on Quadriceps Muscle Function in Individuals With a History of Anterior Cruciate Ligament Reconstruction: A Preliminary Investigation

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Altered quadriceps activation is common following anterior cruciate ligament reconstruction (ACLR), and can persist for years after surgery. These neural deficits are due, in part, to chronic central nervous system alterations. Transcranial direct current stimulation (tDCS) is a noninvasive modality, that is, believed to immediately increase motor neuron activity by stimulating the primary motor cortex, making it a promising modality to use improve outcomes in the ACLR population. Objective: To determine if a single treatment of tDCS would result in increased quadriceps activity and decreased levels of self-reported pain and dysfunction during exercise. Design: Randomized crossover design. Setting: Controlled laboratory. Patients: Ten participants with a history of ACLR (5 males/5 females, 22.9 [4.23] y, 176.57 [12.01] cm, 80.87 [16.86] kg, 68.1 [39.37] mo since ACLR). Interventions: Active tDCS and Sham tDCS. Main Outcome Measures: Percentage of maximum electromyographic data of vastus medialis and lateralis, voluntary isometric strength, percentage of voluntary activation, and self-reported pain and symptom scores were measured. The 2 × 2 repeated-measures analysis of variance by limb were performed to explain the differences between time points (pre and post) and condition (tDCS and sham). Results: There was a significant time main effect for quadriceps percentage of maximum electromyographic of vastus medialis (F9,1 = 11.931, P = .01) and vastus lateralis (F9,1 = 9.132, P = .01), isometric strength (F9,1 = 5.343, P = .046), and subjective scores for pain (F9,1 = 15.499, P = .04) and symptoms (F9,1 = 15.499, P = .04). Quadriceps percentage of maximum electromyographic, isometric strength, and voluntary activation showed an immediate decline from pre to post regardless of tDCS condition. Subjective scores improved slightly after each condition. Conclusions: One session of active tDCS did not have an immediate effect on quadriceps activity and subjective scores of pain and symptoms. To determine if tDCS is a valid modality for this patient population, a larger scale investigation with multiple treatments of active tDCS is warranted.

Rush is with the School of Exercise and Rehabilitation Sciences, College of Health and Human Services, The University of Toledo, Toledo, OH, USA. L.K. Lepley and A.S. Lepley are with the School of Kinesiology, University of Michigan, Ann Arbor, MI, USA. Davi is with the Sports Optimization and Rehabilitation Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT, USA. A.S. Lepley is also with the Michigan Performance Research Laboratory, University of Michigan, Ann Arbor, MI, USA.

Rush (justin.rush@rockets.utoledo.edu) is corresponding author.
  • 1.

    Griffin LY, Albohm MJ, Arendt EA, et al. Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. Am J Sports Med. 2006;34(9):15121532. doi:10.1177/0363546506286866

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Salmon L, Russell V, Musgrove T, Pinczewski L, Refshauge K. Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction. Arthroscopy. 2005;21(8):948957. doi:10.1016/j.arthro.2005.04.110

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Lohmander LS, Ostenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 2004;50(10):31453152. doi:10.1002/art.20589

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Luc B, Gribble PA, Pietrosimone BG. Osteoarthritis prevalence following anterior cruciate ligament reconstruction: a systematic review and numbers-needed-to-treat analysis. J Athl Train. 2014;49(6):806819. doi:10.4085/1062-6050-49.3.35

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Li RT, Lorenz S, Xu Y, Harner CD, Fu FH, Irrgang JJ. Predictors of radiographic knee osteoarthritis after anterior cruciate ligament reconstruction. Am J Sports Med. 2011;39(12):25952603. doi:10.1177/0363546511424720

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Oiestad BE, Holm I, Aune AK, et al. Knee function and prevalence of knee osteoarthritis after anterior cruciate ligament reconstruction: a prospective study with 10 to 15 years of follow-up. Am J Sports Med. 2010;38(11):22012210.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Palmieri-Smith RM, Thomas AC, Wojtys EM. Maximizing quadriceps strength after ACL reconstruction. Clin Sports Med. 2008;27(3):405424. doi:10.1016/j.csm.2008.02.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Lepley AS, Gribble PA, Thomas AC, Tevald MA, Sohn DH, Pietrosimone BG. Quadriceps neural alterations in anterior cruciate ligament reconstructed patients: a 6-month longitudinal investigation. Scand J Med Sci Sports. 2015;25(6):828839. doi:10.1111/sms.12435

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Thomas AC, Villwock M, Wojtys EM, Palmieri-Smith RM. Lower extremity muscle strength after anterior cruciate ligament injury and reconstruction. J Athl Train. 2013;48(5):610620. doi:10.4085/1062-6050-48.3.23

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Pietrosimone BG, Lepley AS, Ericksen HM, Gribble PA, Levine J. Quadriceps strength and corticospinal excitability as predictors of disability after anterior cruciate ligament reconstruction. J Sport Rehabil. 2013;22(1):16. doi:10.1123/jsr.22.1.1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Paterno MV, Schmitt LC, Ford KR, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38(10):19681978. doi:10.1177/0363546510376053

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Tourville TW, Jarrell KM, Naud S, Slauterbeck JR, Johnson RJ, Beynnon BD. Relationship between isokinetic strength and tibiofemoral joint space width changes after anterior cruciate ligament reconstruction. Am J Sports Med. 2014;42(2):302311. doi:10.1177/0363546513510672

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Needle AR, Lepley AS, Grooms DR. Central nervous system adaptation after ligamentous injury: a summary of theories, evidence, and clinical interpretation. Sports Med. 2017;47(7):12711288. doi:10.1007/s40279-016-0666-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hart JM, Pietrosimone B, Hertel J, Ingersoll CD. Quadriceps activation following knee injuries: a systematic review. J Athl Train. 2010;45(1):8797. doi:10.4085/1062-6050-45.1.87

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hopkins JT, Ingersoll CD. Arthogenic muscle inhibition: a limiting factor in joint rehabilitation. J Sport Rehabil. 2000;9(2):135159. doi:10.1123/jsr.9.2.135

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Ingelsrud LH, Terwee CB, Terluin B, et al. Meaningful change scores in the knee injury and osteoarthritis outcome score in patients undergoing anterior cruciate ligament reconstruction. Am J Sports Med. 2018;46(5):11201128. doi:10.1177/0363546518759543

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Lepley AS, Ericksen HM, Sohn DH, Pietrosimone BG. Contributions of neural excitability and voluntary activation to quadriceps muscle strength following anterior cruciate ligament reconstruction. Knee. 2014;21(3):736742. doi:10.1016/j.knee.2014.02.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Pietrosimone B, Lepley AS, Harkey MS, et al. Quadriceps strength predicts self-reported function post-ACL reconstruction. Med Sci Sports Exerc. 2016;48(9):16711677. doi:10.1249/MSS.0000000000000946

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Pietrosimone B, McLeod MM, Florea D, Gribble PA, Tevald MA. Immediate increases in quadriceps corticomotor excitability during an electromyography biofeedback intervention. J Electromyogr Kinesiol. 2015;25(2):316322. doi:10.1016/j.jelekin.2014.11.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Pietrosimone BG, McLeod MM, Lepley AS. A theoretical framework for understanding neuromuscular response to lower extremity joint injury. Sports Health. 2012;4(1):3135. doi:10.1177/1941738111428251

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Ward S, Pearce AJ, Pietrosimone B, Bennell K, Clark R, Bryant AL. Neuromuscular deficits after peripheral joint injury: a neurophysiological hypothesis. Muscle Nerve. 2015;51(3):327332. doi:10.1002/mus.24463

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Rice DA, McNair PJ. Quadriceps arthrogenic muscle inhibition: neural mechanisms and treatment perspectives. Semin Arthritis Rheum. 2010;40(3):250266. doi:10.1016/j.semarthrit.2009.10.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Ziemann U, Paulus W, Nitsche MA, et al. Consensus: motor cortex plasticity protocols. Brain Stimul. 2008;1(3):164182. doi:10.1016/j.brs.2008.06.006

  • 24.

    Borckardt JJ, Reeves ST, Robinson SM, et al. Transcranial direct current stimulation (tDCS) reduces postsurgical opioid consumption in total knee arthroplasty (TKA). Clin J Pain. 2013;29(11):925928. doi:10.1097/AJP.0b013e31827e32be

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Chang WJ, Bennell KL, Hodges PW, et al. Addition of transcranial direct current stimulation to quadriceps strengthening exercise in knee osteoarthritis: a pilot randomised controlled trial. PLoS One. 2017;12(6):e0180328. doi:10.1371/journal.pone.0180328

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Krishnan C, Washabaugh EP, Dutt-Mazumder A, Brown SR, Wojtys EM, Palmieri-Smith RM. Conditioning brain responses to improve quadriceps function in an individual with anterior cruciate ligament reconstruction. Sports Health. 2019;11(4):306315. doi:10.1177/1941738119835163

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Kuenze CM, Hertel J, Hart JM. Quadriceps muscle function after exercise in men and women with a history of anterior cruciate ligament reconstruction. J Athl Train. 2014;49(6):740746. doi:10.4085/1062-6050-49.3.46

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Norte GE, Hertel J, Saliba SA, Diduch DR, Hart JM. Quadriceps neuromuscular function in patients with anterior cruciate ligament reconstruction with or without knee osteoarthritis: a cross-sectional study. J Athl Train. 2018;53(5):475485. doi:10.4085/1062-6050-102-17

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Cogiamanian F, Marceglia S, Ardolino G, Barbieri S, Priori A. Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. Eur J Neurosci. 2007;26(1):242249. doi:10.1111/j.1460-9568.2007.05633.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Angius L, Pageaux B, Hopker J, Marcora SM, Mauger AR. Transcranial direct current stimulation improves isometric time to exhaustion of the knee extensors. Neuroscience. 2016;339:363375. doi:10.1016/j.neuroscience.2016.10.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Vargas VZ, Baptista AF, Pereira GOC, et al. Modulation of isometric quadriceps strength in soccer players with transcranial direct current stimulation: a crossover study. J Strength Cond Res. 2018;32(5):13361341. doi:10.1519/JSC.0000000000001985

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Zarrouk N, Rebai H, Yahia A, Souissi N, Hug F, Dogui M. Comparison of recovery strategies on maximal force-generating capacity and electromyographic activity level of the knee extensor muscles. J Athl Train. 2011;46(4):386394. doi:10.4085/1062-6050-46.4.386

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Pedersen BK, Saltin B. Exercise as medicine—evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports. 2015;25(suppl 3):172. doi:10.1111/sms.12581

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Collins NJ, Misra D, Felson DT, Crossley KM, Roos EM. Measures of knee function: International Knee Documentation Committee (IKDC) subjective knee evaluation form, Knee Injury and Osteoarthritis Outcome Score (KOOS), Knee Injury and Osteoarthritis Outcome Score Physical Function Short form (KOOS-PS), Knee Outcome Survey Activities of Daily Living Scale (KOS-ADL), Lysholm Knee Scoring Scale, Oxford Knee Score (OKS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Activity Rating Scale (ARS), and Tegner Activity Score (TAS). Arthritis Care Res. 2011;63(suppl 11):S208S228. doi:10.1002/acr.20632

    • Search Google Scholar
    • Export Citation
  • 35.

    Lepley AS, Grooms DR, Burland JP, Davi SM, Kinsella-Shaw JM, Lepley LK. Quadriceps muscle function following anterior cruciate ligament reconstruction: systemic differences in neural and morphological characteristics. Exp Brain Res. 2019;237(5):12671278. doi:10.1007/s00221-019-05499-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Lepley AS, Bahhur NO, Murray AM, Pietrosimone BG. Quadriceps corticomotor excitability following an experimental knee joint effusion. Knee Surg Sports Traumatol Arthrosc. 2015;23(4):10101017. doi:10.1007/s00167-013-2816-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Lepley AS, Gribble PA, Thomas AC, Tevald MA, Sohn DH, Pietrosimone BG. Longitudinal evaluation of stair walking biomechanics in patients with ACL injury. Med Sci Sports Exerc. 2016;48(1):715. doi:10.1249/MSS.0000000000000741

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Pietrosimone BG, Lepley AS, Ericksen HM, Clements A, Sohn DH, Gribble PA. Neural excitability alterations after anterior cruciate ligament reconstruction. J Athl Train. 2015;50(6):665674. doi:10.4085/1062-6050-50.1.11

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 180 180 47
Full Text Views 12 12 2
PDF Downloads 12 12 2