Effect of Sand on Landing Knee Valgus During Single-Leg Land and Drop Jump Tasks: Possible Implications for ACL Injury Prevention and Rehabilitation

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $77.00

1 year online subscription

USD  $103.00

Student 2 year online subscription

USD  $147.00

2 year online subscription

USD  $196.00

Context: Despite significant emphasis on anterior cruciate ligament injury prevention, injury rates continue to rise and reinjury is common. Interventions to reduce injury have included resistance, balance, and jump training elements. The use of sand-based jump training has been postulated as an effective treatment. However, evidence on landing mechanics is limited. Objective: To determine potential differences in landing strategies and subsequent landing knee valgus when performing single-leg landing (SLL) and drop jump (DJ) tasks onto sand and land, and to compare between both male and female populations. Design: A randomized repeated-measures crossover design. Setting: University laboratory. Participants: Thirty-one participants (20 males and 11 females) from a university population. Interventions: All participants completed DJ and SLL tasks on both sand and land surfaces. Main Outcome Measures: Two-dimensional frontal plane projection angle (FPPA) of knee valgus was measured in both the DJ and SLL tasks (right and left) for both sand and land conditions. Results: FPPA was lower (moderate to large effect) for SLL in sand compared with land in both legs (left: 4.3° [2.8°]; right: 4.1° [3.8°]) for females. However, effects were unclear (left: −0.7° [2.2°]) and trivial for males (right: −1.1° [1.9°]). FPPA differences for males and females performing DJ were unclear; thus, more data is required. Differences in FPPA (land vs sand) with respect to grouping (sex) for both SLL left (4.9° [3.0°]) and right (5.1° [4.0°]) were very likely higher (small)/possibly moderate for females compared with males. Conclusions: The effects of sand on FPPA during DJ tasks in males and females are unclear, and further data is required. However, the moderate to large reductions in FPPA in females during SLL tasks suggest that sand may provide a safer alternative to firm ground for female athletes in anterior cruciate ligament injury prevention and rehabilitation programs, which involve a SLL component.

Richardson, Wilkinson, and Chesterton are with the Department of Physiotherapy, Sports Rehabilitation, Dietetics and Leadership, Teesside University, Middlesbrough, United Kingdom. Evans is with the Faculty of Health Sciences and Wellbeing, Sunderland University, Sunderland, United Kingdom.

Richardson (m.c.richardson@tees.ac.uk) is corresponding author.
  • 1.

    Majewski M, Susanne H, Klaus S. Epidemiology of athletic knee injuries: a 10-year study. Knee. 2006;13(3):184188. PubMed ID: 16603363 doi:10.1016/j.knee.2006.01.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Faude O, Junge A, Kindermann W, Dvorak J. Injuries in female soccer players: a prospective study in the German national league. Am J Sports Med. 2005;33(11):16941700. PubMed ID: 16093546 doi:10.1177/0363546505275011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Ardern CL, Webster KE, Taylor NF, Feller JA. Return to the preinjury level of competitive sport after anterior cruciate ligament reconstruction surgery: two-thirds of patients have not returned by 12 months after surgery. Am J Sports Med. 2011;39(3):538543. PubMed ID: 21098818 doi:10.1177/0363546510384798

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Leys T, Salmon L, Waller A, Linklater J, Pinczewski L. Clinical results and risk factors for reinjury 15 years after anterior cruciate ligament reconstruction: a prospective study of hamstring and patellar tendon grafts. Am J Sports Med. 2012;40(3):595605. PubMed ID: 22184280 doi:10.1177/0363546511430375

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med. 2007;35(10):17561769. PubMed ID: 17761605 doi:10.1177/0363546507307396

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Prodromos CC, Han Y, Rogowski J, Joyce B, Shi K. A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury–reduction regimen. Arthroscopy. 2007;23(12):13201325.e6. PubMed ID: 18063176 doi:10.1016/j.arthro.2007.07.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Wojtys EM, Huston LJ, Boynton MD, Spindler KP, Lindenfeld TN. The effect of the menstrual cycle on anterior cruciate ligament injuries in women as determined by hormone levels. Am J Sports Med. 2002;30(2):182188. PubMed ID: 11912085 doi:10.1177/03635465020300020601

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Ford KR, Myer GD, Hewett TE. Valgus knee motion during landing in high school female and male basketball players. Med Sci Sports Exerc. 2003;35(10):17451750. PubMed ID: 14523314 doi:10.1249/01.MSS.0000089346.85744.D9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes a prospective study. Am J Sports Med. 2005;33(4):492501. PubMed ID: 15722287 doi:10.1177/0363546504269591

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Jones PA, Herrington LC, Munro AG, Graham-Smith P. Is there a relationship between landing, cutting, and pivoting tasks in terms of the characteristics of dynamic valgus? Am J Sports Med. 2014;42(9):20952102. PubMed ID: 25005852 doi:10.1177/0363546514539446

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Souza RB, Powers CM. Differences in hip kinematics, muscle strength, and muscle activation between subjects with and without patellofemoral pain. J Orthop Sports Phys Ther. 2009;39(1):1219. PubMed ID: 19131677 doi:10.2519/jospt.2009.2885

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Myer GD, Ford KR, Khoury J, Succop P, Hewett TE. Biomechanics laboratory-based prediction algorithm to identify female athletes with high knee loads that increase risk of ACL injury. Br J Sports Med. 2011;45:245252. PubMed ID: 20558526 doi:10.1136/bjsm.2009.069351

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Munro A, Herrington L, Carolan M. Reliability of 2-dimensional video assessment of frontal-plane dynamic knee valgus during common athletic screening tasks. J Sport Rehabil. 2012;21(1):711. PubMed ID: 22104115 doi:10.1123/jsr.21.1.7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Herrington L, Munro A. Drop jump landing knee valgus angle; normative data in a physically active population. Phys Ther Sport. 2010;11(2):5659. PubMed ID: 20381002 doi:10.1016/j.ptsp.2009.11.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Herrington L. The effects of 4 weeks of jump training on landing knee valgus and crossover hop performance in female basketball players. J Strength Cond Res. 2010;24(12):34273432. PubMed ID: 20664369 doi:10.1519/JSC.0b013e3181c1fcd8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Kato S., Urabe Y ., Kawamura K. Alignment control exercise changes lower extremity movement during stop movements in female basketball players. Knee, 2008;15(4):299304. PubMed ID: 18524598 doi:10.1016/j.knee.2008.04.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Di Stasi S, Myer GD, Hewett TE. Neuromuscular training to target deficits associated with second anterior cruciate ligament injury. J Orthop Sports Phys Ther. 2013;43(11):777792. PubMed ID: 24175599 doi:10.2519/jospt.2013.4693

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Binnie MJ, Dawson B, Arnot MA, Pinnington H, Landers G, Peeling P. Effect of sand versus grass training surfaces during an 8-week pre-season conditioning programme in team sports athletes. J Sports Sci. 2014;32(11):10011012. PubMed ID: 24479768 doi:10.1080/02640414.2013.879333

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Impellizzeri FM, Rampinini E, Castagna C, Martino F, Fiorini S, Wisloff U. Effect of plyometric training on sand versus grass on muscle soreness and jumping and sprinting ability in soccer players. Br J Sports Med. 2008;42:4246. PubMed ID: 17526621 doi:10.1136/bjsm.2007.038497

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Miyama M, Nosaka K. Influence of surface on muscle damage and soreness induced by consecutive drop jumps. J Strength Cond Res. 2004;18:206211. PubMed ID: 15142020

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Barrett RS, Neal RJ, Roberts LJ. The dynamic loading response of surfaces encountered in beach running. J Sci Med Sport. 1998;1(1):111. PubMed ID: 9732116 doi:10.1016/S1440-2440(98)80003-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Binnie MJ, Dawson B, Pinnington H, Landers G, Peeling P. Effect of training surface on acute physiological responses after interval training. J Strength Cond Res. 2013;27(4):10471056. PubMed ID: 22739328 doi:10.1519/JSC.0b013e3182651fab

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Pinnington HC, Lloyd DG, Besier TF, Dawson B. Kinematic and electromyography analysis of submaximal differences running on a firm surface compared with soft, dry sand. Eur J Appl Physiol. 2005;94:242253. PubMed ID: 15815938 doi:10.1007/s00421-005-1323-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Gortsila E, Theos A, Smirnioti A, Maridaki M. The effect of sand-based training in agility of pre-pubescent volleyball players. Paper presented at: 16th Annual Congress of the European College of Sport Science, July, 2011; Liverpool, UK. Book of Abstracts: 643.

    • Search Google Scholar
    • Export Citation
  • 25.

    Yigit SS, Tuncel F. A comparison of the endurance training responses to road and sand running in high school and college students. J Strength Cond Res. 1998;12(2):7981. doi:10.1519/00124278-199805000-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Mirzaei B, Norasteh AA, de Villarreal ES, Asadi A. Effects of six weeks of depth jump vs countermovement jump training on sand on muscle soreness and performance. Kinesiology. 2014;46(1):97108.

    • Search Google Scholar
    • Export Citation
  • 27.

    Arazi H, Mohammadi M, Asadi A. Muscular adaptations to depth jump plyometric training: comparison of sand vs land surface. Interv Med Appl Sci. 2014;6(3):125130. PubMed ID: 25243078 doi:10.1556/IMAS.6.2014.3.5

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Richardson M, Murphy S, Macpherson T, English B, Spears I, Chesterton P. Effect of sand on knee load during a single-leg jump task: implications for injury prevention and rehabilitation programs [published online ahead of print May 7, 2018]. J Strength Cond Res. doi:10.1519/JSC.0000000000002623

    • Search Google Scholar
    • Export Citation
  • 29.

    Herrington L, Alenezi F, Alzhrani M, Alrayani H, Jones R. The reliability and criterion validity of 2D video assessment of single leg squat and hop landing. J Electromyogr Kinesiol. 2017;34:8085. doi:10.1016/j.jelekin.2017.04.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Young W, Elias G, Power J. Effects of static stretching volume and intensity on plantar flexor explosive force production and range of motion. J Sports Med Phys Fitness. 2006;46(3):403411. PubMed ID: 16998444

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Munro A, Herrington L, Comfort P. The relationship between 2-dimensional knee-valgus angles during single-leg squat, single-leg-land, and drop-jump screening tests. J Sport Rehabil. 2017;26(1):7277. PubMed ID: 28095108 doi:10.1123/jsr.2015-0102

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Hopkins WG. Spreadsheets for analysis of controlled trials with adjustment for a predictor. Sportscience. 2006;10:4650.

  • 33.

    Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420428. PubMed ID: 18839484 doi:10.1037/0033-2909.86.2.420

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Hopkins W, Marshall S, Batterham A, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Malcata RM, Vandenbogaerde TJ, Hopkins WG. Using athletes’ world rankings to assess countries’ performance. Int J Sports Physiol Perform. 2014;9(1):133138. PubMed ID: 23579093 doi:10.1123/ijspp.2013-0014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Blume JD, McGowan LD, Dupont WD, Greevy RA Jr. Second-generation P-values: improved rigor, reproducibility, & transparency in statistical analyses. PLoS One. 2018;13(3):e0188299. PubMed ID: 29565985 doi:10.1371/journal.pone.0188299

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Yu B, Garrett WE. Mechanisms of non-contact ACL injuries. Br J Sports Med. 2007;41(suppl 1):i47i51. PubMed ID: 17646249 doi:10.1136/bjsm.2007.037192

  • 38.

    Kristianslund E, Faul O, Bahr R, Myklebust G, Krosshaug T. Sidestep cutting technique and knee abduction loading: implications for ACL prevention exercises. Br J Sports Med. 2014;48(9):779783. PubMed ID: 23258848 doi:10.1136/bjsports-2012-091370

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Munro A, Herrington L, Comfort P. Comparison of landing knee valgus angle between female basketball and football athletes: possible implications for anterior cruciate ligament and patellofemoral joint injury rates. Phys Ther Sport. 2012;13(4):259264. PubMed ID: 23068903 doi:10.1016/j.ptsp.2012.01.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Pappas E, Hagins M, Sheikhzadeh A, Nordin M, Rose D. Biomechanical differences between unilateral and bilateral landings from a jump: gender differences. Clin J Sport Med. 2007;17(4):263268. PubMed ID: 17620779 doi:10.1097/JSM.0b013e31811f415b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Hewett TE, Johnson DL. ACL prevention programs: fact or fiction? Orthopedics. 2010;33(1):3639. PubMed ID: 20052952 doi:10.3928/01477447-20091124-19

  • 42.

    Howatson G, Van Someren KA. The prevention and treatment of exercise-induced muscle damage. Sports Med. 2008;38(6):483503. PubMed ID: 18489195 doi:10.2165/00007256-200838060-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Morgan KD, Donnelly CJ, Reinbolt JA. Elevated gastrocnemius forces compensate for decreased hamstrings forces during the weight-acceptance phase of single-leg jump landing: implications for anterior cruciate ligament injury risk. J Biomech. 2014;47:32953302. PubMed ID: 25218505 doi:10.1016/j.jbiomech.2014.08.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Donnell-Fink LA, Klara K, Collins JE, et al. Effectiveness of knee injury and anterior cruciate ligament tear prevention programs: a meta-analysis. PLoS One. 2016;10(12):e0144063. doi:10.1371/journal.pone.0144063

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Moritz CT, Farley CT. Passive dynamics change leg mechanics for an unexpected surface during human hopping. J Appl Physiol. 2004;97(4):13131322. PubMed ID: 15169748 doi:10.1152/japplphysiol.00393.2004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Copozzo A, Catani F, Della Croce U, Leardini A. Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech. 1996;11(2):90100. doi:10.1016/0268-0033(95)00046-1

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1167 1167 83
Full Text Views 53 53 1
PDF Downloads 40 40 2