Acute Neuromuscular Electrical Stimulation (NMES) With Blood Flow Restriction: The Effect of Restriction Pressures

Click name to view affiliation

Paul Head
Search for other papers by Paul Head in
Current site
Google Scholar
PubMed
Close
,
Mark Waldron
Search for other papers by Mark Waldron in
Current site
Google Scholar
PubMed
Close
,
Nicola Theis
Search for other papers by Nicola Theis in
Current site
Google Scholar
PubMed
Close
, and
Stephen David Patterson
Search for other papers by Stephen David Patterson in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: Neuromuscular electrical stimulation (NMES) combined with blood flow restriction (BFR) has been shown to improve muscular strength and size better than NMES alone. However, previous studies used varied methodologies not recommended by previous NMES or BFR research. Objective: The present study investigated the acute effects of NMES combined with varying degrees of BFR using research-recommended procedures to enhance understanding and the clinical applicability of this combination. Design: Randomized crossover. Setting: Physiology laboratory. Participants: A total of 20 healthy adults (age 27 [4] y; height 177 [8] cm; body mass 77 [13] kg). Interventions: Six sessions separated by at least 7 days. The first 2 visits served as familiarization, with the experimental conditions performed in the final 4 sessions: NMES alone, NMES 40% BFR, NMES 60% BFR, and NMES 80% BFR. Main Outcome Measures: Maximal voluntary isometric contraction, muscle thickness, blood pressure, heart rate, rating of perceived exertion, and pain were all recorded before and after each condition. Results: The NMES 80% BFR caused greater maximal voluntary isometric contraction decline than any other condition (−38.9 [22.3] N·m, P < .01). Vastus medialis and vastus lateralis muscle thickness acutely increased after all experimental conditions (P < .05). Pain and ratings of perceived exertion were higher after NMES 80% BFR compared with all other experimental conditions (P < .05). No cardiovascular effects were observed between conditions. Conclusion: The NMES combined with 80% BFR caused greater acute force decrement than the other conditions. However, greater perceptual ratings of pain and ratings of perceived exertion were observed with NMES 80% BFR. These acute observations must be investigated during chronic interventions to corroborate any relationship to changes in muscle strength and size in clinical populations.

Head and Patterson are with the Faculty of Sport, Health and Applied Science, St Mary’s University, London, United Kingdom. Waldron is with the College of Engineering, Swansea University, Swansea, United Kingdom; and the School of Science and Technology, University of New England, Armidale, NSW, Australia. Theis is with the School of Sport & Exercise, University of Gloucestershire, Gloucestershire, United Kingdom.

Patterson (stephen.patterson@stmarys.ac.uk) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Hughes L, Paton B, Rosenblatt B, Gissane C, Patterson SD. Blood flow restriction training in clinical musculoskeletal rehabilitation: a systematic review and meta-analysis. Br J Sports Med. 2017;51(13):10031011. PubMed ID: 28259850 doi:10.1136/bjsports-2016-097071

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Patterson SD, Hughes L, Warmington S, et al. Blood flow restriction exercise position stand: considerations of methodology, application, and safety. Front Physiol. 2019;10(15):533. PubMed ID: 31156448 doi:10.3389/fphys.2019.00533

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Wall BT, Van Loon LJC. Nutritional strategies to attenuate muscle disuse atrophy. Nutr Rev. 2013;71(4):195208. PubMed ID: 23550781 doi:10.1111/nure.12019

  • 4.

    Thom JM, Thompson MW, Ruell PA, et al. Effect of 10-day cast immobilization on sarcoplasmic reticulum calcium regulation in humans. Acta Physiol Scand. 2001;172(2):141147. PubMed ID: 11442454 doi:10.1046/j.1365-201X.2001.00853.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Kubota A, Sakuraba K, Sawaki K, Sumide T, Tamura Y. Prevention of disuse muscular weakness by restriction of blood flow. Med Sci Sports Exerc. 2008;40(3):529534. PubMed ID: 18379217 doi:10.1249/MSS.0b013e31815ddac6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Kubota A, Sakuraba K, Koh S, Ogura Y, Tamura Y. Blood flow restriction by low compressive force prevents disuse muscular weakness. J Sci Med Sport. 2011;14(2):9599. PubMed ID: 21035395 doi:10.1016/j.jsams.2010.08.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol. 2000;88(6):20972106. PubMed ID: 10846023 doi:10.1152/jappl.2000.88.6.2097

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Iversen E, Røstad V, Larmo A. Intermittent blood flow restriction does not reduce atrophy following anterior cruciate ligament reconstruction. J Sport Health Sci. 2016;5(1):115118. PubMed ID: 30356481 doi:10.1016/j.jshs.2014.12.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Dirks ML, Wall BT, Snijders T, Ottenbros CLP, Verdijk LB, Van Loon LJC. Neuromuscular electrical stimulation prevents muscle disuse atrophy during leg immobilization in humans. Acta Physiol. 2014;210(3):628641. doi:10.1111/apha.12200

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Jones S, Man WD-C, Gao W, Higginson IJ, Wilcock A, Maddocks M. Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease. Cochrane Database Syst Rev. 2016;10(10):CD009419. doi:10.1002/14651858.CD009419.pub3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Gorgey AS, Timmons MK, Dolbow DR, et al. Electrical stimulation and blood flow restriction increase wrist extensor cross-sectional area and flow meditated dilatation following spinal cord injury. Eur J Appl Physiol. 2016;116(6):12311244. PubMed ID: 27155846 doi:10.1007/s00421-016-3385-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Natsume T, Ozaki H, Saito AI, Abe T, Naito H. Effects of electrostimulation with blood flow restriction on muscle size and strength. Med Sci Sports Exerc. 2015;47(12):26212627. PubMed ID: 26110693 doi:10.1249/MSS.0000000000000722

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Slysz JT, Burr JF. The effects of blood flow restricted electrostimulation on strength and hypertrophy. J Sport Rehabil. 2018;27(3):257262. PubMed ID: 28513326 doi:10.1123/jsr.2017-0002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Andrade SF, Skiba GH, Krueger E, André F. Effects of electrostimulation with blood flow restriction on muscle thickness and strength of the soleus. J Exerc Physiol. 2016;19(3):5969.

    • Search Google Scholar
    • Export Citation
  • 15.

    Maffiuletti NA. Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol. 2010;110(2):223234. PubMed ID: 20473619 doi:10.1007/s00421-010-1502-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Inagaki Y, Madarame H, Neya M, Ishii N. Increase in serum growth hormone induced by electrical stimulation of muscle combined with blood flow restriction. Eur J Appl Physiol. 2011;111(11):27152721. PubMed ID: 21399959 doi:10.1007/s00421-011-1899-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Martín-Hernández J, Santos-Lozano A, Foster C, Lucia A. Syncope episodes and blood flow restriction training. Clin J Sport Med. 2018;28(6):e89e91. doi:10.1097/JSM.0000000000000496

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Hughes L, Jeffries O, Waldron M, et al. Influence and reliability of lower-limb arterial occlusion pressure at different body positions. PeerJ. 2018;6:e4697. PubMed ID: 29736337 doi:10.7717/peerj.4697

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Nakajima T, Koide S, Yasuda T, et al. Muscle hypertrophy following blood flow-restricted low force isometric electrical stimulation in rat tibialis anterior: role for muscle hypoxia. J Appl Physiol. 2018;125(1):134145. PubMed ID: 29565774 doi:10.1152/japplphysiol.00972.2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Fisher JP, Blossom D, Steele J. A comparison of volume-equated knee extensions to failure, or not to failure, upon rating of perceived exertion and strength adaptations. Appl Physiol Nutr Metab. 2015;41(2):168174. PubMed ID: 26789094 doi:10.1139/apnm-2015-0421

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Kim D, Loenneke JP, Ye X, et al. Low-load resistance training with low relative pressure produces muscular changes similar to high-load resistance training. Muscle Nerve. 2017;56(6):E126E133. PubMed ID: 28224640 doi:10.1002/mus.25626

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Fatela P, Reis JF, Mendonca GV, Avela J, Mil-Homens P. Acute effects of exercise under different levels of blood-flow restriction on muscle activation and fatigue. Eur J Appl Physiol. 2016;116(5):985995. PubMed ID: 27017495 doi:10.1007/s00421-016-3359-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Aboyans V, Criqui MH, Abraham P, et al. Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. Circulation. 2012;126(24):28902909. PubMed ID: 23159553 doi:10.1161/CIR.0b013e318276fbcb

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hughes L, Rosenblatt B, Gissane C, Paton B, Patterson SD. Interface pressure, perceptual, and mean arterial pressure responses to different blood flow restriction systems. Scand J Med Sci Sports. 2018;28(7):17571765. PubMed ID: 29630752 doi:10.1111/sms.13092

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Head P, Austen B, Browne D, Campkin T, Barcellona M. Effect of practical blood flow restriction training during bodyweight exercise on muscular strength, hypertrophy and function in adults: a randomised controlled trial. Int J Ther Rehabil. 2015;22(6):263271. doi:10.12968/ijtr.2015.22.6.263

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sport Exerc. 1982;14(5):377381. doi:10.1249/00005768-198205000-00012

  • 27.

    Hawker GA, Mian S, Kendzerska T, French M. Measures of adult pain: visual analog scale for pain (vas pain), numeric rating scale for pain (nrs pain), mcgill pain questionnaire (mpq), short-form mcgill pain questionnaire (sf-mpq), chronic pain grade scale (cpgs), short form-36 bodily pain scale (sf-36 bps), and measure of intermittent and constant osteoarthritis pain (icoap). Arthritis Care Res. 2011;63(S11):S240S252. doi:10.1002/acr.20543

    • Search Google Scholar
    • Export Citation
  • 28.

    Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001;81(4):17251789. PubMed ID: 11581501 doi:10.1152/physrev.2001.81.4.1725

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Cook SB, Clark BC, Ploutz-Snyder LL. Effects of exercise load and blood-flow restriction on skeletal muscle function. Med Sci Sports Exerc. 2007;39(10):17081713. PubMed ID: 17909396 doi:10.1249/mss.0b013e31812383d6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Pierce JR, Clark BC, Ploutz-Snyder LL, Kanaley JA. Growth hormone and muscle function responses to skeletal muscle ischemia. J Appl Physiol. 2006;101(6):15881595. PubMed ID: 16888046 doi:10.1152/japplphysiol.00585.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Karabulut M, Cramer JT, Abe T, Sato Y, Bemben MG. Neuromuscular fatigue following low-intensity dynamic exercise with externally applied vascular restriction. J Electromyogr Kinesiol. 2010;20(3):440447. PubMed ID: 19640732 doi:10.1016/j.jelekin.2009.06.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Cook SB, Kanaley JA, Ploutz-Snyder LL. Neuromuscular function following muscular unloading and blood flow restricted exercise. Eur J Appl Physiol. 2014;114(7):13571365. PubMed ID: 24643427 doi:10.1007/s00421-014-2864-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Peltonen H, Walker S, Lähitie A, Häkkinen K, Avela J. Isometric parameters in the monitoring of maximal strength, power, and hypertrophic resistance-training. Appl Physiol Nutr Metab. 2017;43(2):145153. PubMed ID: 29017022 doi:10.1139/apnm-2017-0310

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Natsume T, Yoshihara T, Naito H. Electromyostimulation with blood flow restriction enhances activation of mTOR and MAPK signalling pathways in rat gastrocnemius muscles. FASEB J. 2018;32(suppl 1):lb46.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Suga T, Okita K, Morita N, et al. Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. J Appl Physiol. 2009;106(4):11191124. PubMed ID: 19213931 doi:10.1152/japplphysiol.90368.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Sugaya M, Yasuda T, Suga T, Okita K, Abe T. Change in intramuscular inorganic phosphate during multiple sets of blood flow-restricted low-intensity exercise. Clin Physiol Funct Imaging. 2011;31(5):411413. PubMed ID: 21771263 doi:10.1111/j.1475-097X.2011.01033.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Suga T, Okita K, Takada S, et al. Effect of multiple set on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. Eur J Appl Physiol. 2012;112(11):39153920. PubMed ID: 22415101 doi:10.1007/s00421-012-2377-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Amann M, Sidhu SK, Weavil JC, Mangum TS, Venturelli M. Autonomic responses to exercise: group III/IV muscle afferents and fatigue. Auton Neurosci. 2015;188:1923. PubMed ID: 25458423 doi:10.1016/j.autneu.2014.10.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Amann M, Calbet JAL. Convective oxygen transport and fatigue. J Appl Physiol. 2008;104(3):861870. PubMed ID: 17962570 doi:10.1152/japplphysiol.01008.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Krustrup P, Söderlund K, Relu MU, Ferguson RA, Bangsbo J. Heterogeneous recruitment of quadriceps muscle portions and fibre types during moderate intensity knee-extensor exercise: effect of thigh occlusion. Scand J Med Sci Sports. 2009;19(4):576584. PubMed ID: 18627560 doi:10.1111/j.1600-0838.2008.00801.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287332. PubMed ID: 18195089 doi:10.1152/physrev.00015.2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Wernbom M, Järrebring R, Andreasson MA, Augustsson J. Acute effects of blood flow restriction on muscle activity and endurance during fatiguing dynamic knee extensions at low load. J Strength Cond Res. 2009;23(8):23892395. PubMed ID: 19826283. doi:10.1519/JSC.0b013e3181bc1c2a. Available from http://www.kultur.gu.se/digitalAssets/1290/1290696_Wernbom_-_Acute_Effects_of_Blood_Flow.pdf

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Sale DG. Influence of exercise and training on motor unit activation. Exerc Sport Sci Rev. 1987;15:95151. PubMed ID: 3297731 doi:10.1249/00003677-198700150-00008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Fujita S, Abe T, Drummond MJ, et al. Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol. 2007;103(3):903910. PubMed ID: 17569770 doi:10.1152/japplphysiol.00195.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Reis JF, Fatela P, Mendonca GV, et al. Tissue oxygenation in response to different relative levels of blood-flow restricted exercise. Front Physiol. 2019;10:104. doi:10.3389/fphys.2019.00407

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Jessee MB, Mattocks KT, Buckner SL, et al. The acute muscular response to blood flow-restricted exercise with very low relative pressure. Clin Physiol Funct Imaging. 2018;38(2):304311. PubMed ID: 28251784 doi:10.1111/cpf.12416

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Yasuda T, Loenneke JP, Thiebaud RS, Abe T. Effects of blood flow restricted low-intensity concentric or eccentric training on muscle size and strength. PLoS One. 2012;7(12):e52843. doi:10.1371/journal.pone.0052843

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Counts BR, Dankel SJ, Barnett BE, et al. Influence of relative blood flow restriction pressure on muscle activation and muscle adaptation. Muscle Nerve. 2016;53(3):438445. PubMed ID: 26137897 doi:10.1002/mus.24756

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Loenneke JP, Kim D, Fahs CA, et al. The influence of exercise load with and without different levels of blood flow restriction on acute changes in muscle thickness and lactate. Clin Physiol Funct Imaging. 2017;37(6):734740. PubMed ID: 27076283 doi:10.1111/cpf.12367

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Schoenfeld BJ. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sport Med. 2013;43(3):179194. doi:10.1007/s40279-013-0017-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Wernbom M, Augustsson J, Thomeé R. Effects of vascular occlusion on muscular endurance in dynamic knee extension exercise at different submaximal loads. J Strength Cond Res. 2006;20(2):372377. PubMed ID: 16686566

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Jones MD, Taylor JL, Barry BK. Occlusion of blood flow attenuates exercise-induced hypoalgesia in the occluded limb of healthy adults. J Appl Physiol. 2017;122(5):12841291. PubMed ID: 28183823 doi:10.1152/japplphysiol.01004.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Kang JH, Hyong IH. The influence of neuromuscular electrical stimulation on the heart rate variability in healthy subjects. J Phys Ther Sci. 2014;26(5):633635. PubMed ID: 24926120 doi:10.1589/jpts.26.633

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Lee SY, Im SH, Kim BR, Choi JH, Lee SJ, Han EY. The effects of neuromuscular electrical stimulation on cardiopulmonary function in healthy adults. Ann Rehabil Med. 2012;36(6):84956. PubMed ID: 23342319 doi:10.5535/arm.2012.36.6.849

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Iida H, Kurano M, Takano H, et al. Hemodynamic and neurohumoral responses to the restriction of femoral blood flow by KAATSU in healthy subjects. Eur J Appl Physiol. 2007;100(3):275285. PubMed ID: 17342543 doi:10.1007/s00421-007-0430-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Loenneke JP, Fahs CA, Thiebaud RS, et al. The acute hemodynamic effects of blood flow restriction in the absence of exercise. Clin Physiol Funct Imaging. 2013;33(1):7982. PubMed ID: 23216770 doi:10.1111/j.1475-097X.2012.01157.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Karanicolas PJ, Farrokhyar F, Bhandari M. Blinding: who, what, when, why, how? Can J Surg. 2010;53(5):345. PubMed ID: 20858381

All Time Past Year Past 30 Days
Abstract Views 5395 1420 162
Full Text Views 151 47 21
PDF Downloads 137 23 10